Коллоидная и химическая стабильность. Маркировка пластичных смазок

Канд. хим. наук В.В. АЛЕКСЕЕНКО, аспирант Р. Г. ЖИТО В, д-р техн. наук В.Н. КИЖНЯЕВ (Иркутский государственный университет), А.В. МИТЮГИН (директор фирмы «Митюгин»)


Широко известно насколько актуальна проблема утилизации отработанных автомобильных покрышек для всех развитых стран, в -ом числе и для России. Большинство специалистов сходятся во мнении, что утилизация покрышек возможна только при использовании резино-технических отходов в дорожном строительстве. Одним из наиболее привлекательных вариантов подобного использования является производство битумно-резиновых композитов (БРК) в качестве вяжущих для асфальтобетонов. В этом направлении уже два десятка лет ведутся интенсивные исследования, и в разных странах с разной долей успеха решение этой задачи имеет практическую реализацию.

Если мы хотим улучшения реологических характеристик биту-мо-резиновых композиционных вяжущих по сравнению с исходным битумом, а не просто решить экологическую проблему резиновых отходов, то проблема совмещения резины и битума сводится к задаче девулканизации резины без значительного разрушения макромолекул исходного каучука и последующего растворения каучука в битуме.

Большинство существующих на данный момент технологий получения БРК основано на механическом смешении битума с резиновой крошкой, приготовленной с использованием различных вариантов измельчения резины, вплоть до долей миллиметра. При этом увеличение степени дисперсности и, как следствие, развитая поверхность резиновой крошки, способствуют очень эффективному набуханию резичы в битуме. При таком подходе девулканиза-ция резины и разрушение макромолекул каучука идут параллель-

Но, поэтому диапазон вязко-пластичного поведения вяжущего: разница между температурой размягчения Т (по методу кольцо и шар) и температурой хрупкости Тхр (по методу Фрааса) — увеличивается незначительно.

Следует признать, что хорошо диспергированная в вяжущем мелкая крошка значительно повышает температуру размягчения Т. Например, требования к БРК, известного в западных странах под маркой Asphalt-Rubber согласно стандарта, составляют не менее 65°С, что превышает российские требования даже для полимер-би-тумных вяжущих. Однако и стоимость композита, производимого из мелкодисперсной резиновой крошки, очень высокая и существенно превышает стоимость исходного битума. Чем мельче резиновая крошка, тем она дороже, тем дороже вяжущее на ее основе. Тем не менее, в западных странах наличие эффективных механизмов стимулирования технологий, помогающих решать экологические проблемы, приводит к тому, что стоимость вяжущего не имеет решающего значения для производителей БРК, поэтому складывается впечатление, что большинство исследований в области использования резино-технических отходов в дорожном строительстве никогда не ставило перед собой задач максимальной девулканизации резины до исходного каучука с целью максимального диспергирования (растворения) его в битуме, что позволило бы существенно повысить физико-механические и эксплуатационные свойства БРК. Как правило, исследования имеют направленность на решение экологической проблемы — крупнотоннажной утилизации резины и получению вяжущего для дорожного строительства, не уступающего по свойствам нефтяному битуму.

Для такой упрощённой задачи — утилизации отработанных покрышек с получением вяжущего, аналогичного по качеству нефтяному дорожному битуму — нами был разработан метод растворения резиновой крошки под действием СВЧ излучения. Установлено, что наиболее подходящим для этих целей девулканизатором и растворителем резиновой крошки является нафталиновая фракция каменноугольной смолы (НФКУС). Полное растворение крошки размером 5-7 мм в каменноугольной смоле (критерием служит отсутствие неоднородностей, фиксируемых глазом) происходит при температуре 220-230°С менее, чем за полчаса. В результате получается однородный битумноподобный продукт. Затраты электроэнергии на килограмм производимого композита составляют менее 0,5 Квт-ч. В табл. 1 представлены результаты исследований некоторых свойств получаемого бинарного композита в зависимости от количества растворенной в НФКУС резиновой крошки.

Следует отметить, что невозможно получить композит с более чем 407о-ным содержанием резиновой крошки (которая очень эффективно поглощает СВЧ излучение) из-за воспламенения реакционной массы в ходе растворения, если процесс вести в открытой емкости в контакте с атмосферным кислородом. Немонотонное изменение всех исследованных параметров от количества растворенной в композите резины демонстрирует, что одновременно и неконтролируемо происходит девулканизация резины и разрушение макромолекул исходного каучука. Полученный бинарный композит резина — НФКУС обладает незначительной растяжимостью, поэтому нами в качестве вяжущего для асфальтобетона предлагается смесь бинарного композита (40% от массы) с битумом марки БНД 90/130 (60% от массы). В табл. 2 представлены характеристики данного БРК.

Физико-химические характеристики композитов резина — НФКУС

Таблица 1.

Физико-химические характеристики БРК (композит резина — НФКУС 40% и БНД 60%)

Таблица 2. * Содержание резины в бинарном композите резина - НФКУС составляет 30%, содержание резины в БРК составляет 12%

Содержание БРК и свойства асфальтобетонов

Таблица 3.

Асфальтобетоны на основе БРК, полученного с использованием СВЧ технологии, имеют практически те же физико-механические характеристики, что и асфальтобетоны на основе БНД. Заметно увеличивается только коэффициент водостойкости асфальтобетона на основе композита, так как НФКУС имеет в своём составе значительное количество ароматических и функциональных структур, что обеспечивает лучшую адгезию к минеральному наполнителю (особенно для материалов из кислых пород). Таким образом, предлагаемый подход совмещения резины с битумом, позволяет решить задачу получения на основе резино-технических отходов не уступающего по свойствам нефтяному битуму вяжущего для асфальтобетонов Что касается перспективной стоимости тройного композита БРК, то следует отметить, что НФКУС и крупная резиновая крошка (для данного метода нет необходимости извлекать синтетический корд) стоят заметно меньше нефтяных битумов, поэтому замена 40% битума на композит, в целом, приведет к удешевлению вяжущего. Однако, из-за сложности конструирования промышленного реактора, работающего на СВЧ излучении, этот метод не был реализован нами в промышленном масштабе.

Для создания технологически реального производства переработки отходов резины в вяжущие материалы для дорожного строительства была исследована возможность совмещения (растворения) резиновой крошки с битумом непосредственно в процессе ее девулканизации с учетом требования минимальной деструкции макромолекул каучука, входящего в состав резины. Такой подход получения БРК позволил бы существенно увеличить количество оастворенной резины и уменьшить содержание каменноугольной смолы в конечном композите, производимом из резиновой крошки, НФКУС и битума. Как следствие, это должно было бы привести к получению вяжущих, обладающих значительно лучшими реологическими характеристиками по сравнению с БРК, рассмотренному выше.

Для решения поставленной задачи был выбран «мокрый» метод механохимического воздействия при температуре 200-220 °С на смесь резиновой крошки с девулканизирующим агентом (НФКУС) и битумом марки БНД 90/130. Такой подход не требует использования СВЧ излучения для поддержания заданной температуры в ходе процесса и не требователен к гранулярному составу резиновой крошки. Более того, экспериментально установлено, что использование мелкой (размер частиц 1,0-0,1 мм) и сверхмелкой (размер частиц 0,01-0,001 мм) резиновой крошки не оказывает положительного влияния на качество конечного композита. Вероятно, «сухое» дробление резины или измельчение резины озоновым методом приводит не столько к разрушению «сшивающих» сульфидных мостиков в резине, сколько к сильной деструкции макромолекул каучука. При растворении такой резиновой крошки в смеси НФКУС и БНД в растворенное состояние переходит низкомолекулярный девулканизированный каучук, который не оказывает положительного влияния на свойства конечного БРК. Наиболее оптимальным вариантом резиновой крошки для механохимического растворения является фракция с размерами частиц 5-7 мм. Кроме того, это выгодно и с экономических позиций: чем крупнее крошка, тем она дешевле.

Кроме улучшения физико-механических параметров БРК нами ставилась задача минимизации содержания НФКУС, как наиболее токсичного ингредиента в получаемом композите. Экспериментально было установлено, что оптимальное содержание НФКУС, способствующее растворению резины в смеси, составляет 30% от массы резиновой крошки. То, что под действием температуры и механохимического воздействия происходит процесс девулканизации резины, и макромолекулы каучука растворяются в смеси битума и каменноугольной смолы, было доказано с помощью спектроскопии ЯМР 1 H и 13 С. В спектрах ЯМР растворов БРК в ССl 4 были зарегистрированы сигналы, характерные для мономерного Звена бутадиенсодержащего каучука (-Н 2 С-СН=СН-СН 2 -). Таким образом, сам факт обнаружения макромолекул каучука в растворе указывает на растворение резиновой крошки вследствие девулканизации резины в условиях производства БРК (вулканизированный каучук способностью растворяться не обладает).

Получаемый методом механохимической девулканизации резины БРК представляет собой битумоподобное вещество с размером неоднородностей, не превышающих 0,1 мм. Время, за которое достигается полное растворение резиновой крошки в композите, составляет 3-4 ч. Дальнейшее увеличение продолжительности процесса с целью уменьшения размеров неоднородностей нецелесообразно, так как они не влияют на физико-механические свойства асфальтобетона на основе БРК. Важнейшими эксплуатационными характеристиками такого асфальтобетона являются температура размягчения Т р, температура хрупкости Т хр и адгезия вяжущего к минеральному наполнителю. На рисунке представлена зависимость Т р и Т хр от содержания в БРК растворенной резиновой крошки.

Зависимость температуры хрупкости (1) и размягчения (2) БРК от содержания в нем растворенной резины


Как видно из рисунка, оптимальное количество резиновой крошки при приготовлении БРК составляет 20-22% от суммарной массы всех ингредиентов. При таком содержании резины в композите наблюдается минимальное значение Т р (-30°С), что очень важно для вяжущего, используемого для приготовления асфальтобетона в условиях Сибири. При необходимости создания вяжущего с повышенной Т р (до 72°С) содержание резиновой крошки должно быть увеличено до 25% от массы. Следует отметить, что сцепление БРК с любыми минеральными материалами соответствует образцу №1 по ГОСТ 11508.

В табл. 3 представлены результаты испытаний произведенного на основе БРК асфальтобетона типа Б, содержащего щебень из гравия, отсев от дробления диабаза и гравия, минеральный порошок из доломитовой муки.

Обращает на себя внимание очень хорошая прочность, а следовательно, и сдвигоустойчивость асфальтобетона на основе БРК при 50°С при оптимальном содержании вяжущего. Температурная чувствительность прочности асфальтобетона на основе БРК даже меньше, чем у полимер-асфальтобетонов, одним из основных достоинств которых, является термостабильность.

Приведённые выше результаты были получены в 2006-2007 гг. на битуме Ангарской нефтехимической компании. В 2008 г. свойс-иа битума марки БНД 90/130, производимого этой компанией, заметно изменились, что, естественно, отразилось и на характеристиках БРК. Тем не менее, экспериментально нами было установлено, что варьированием состава исходной смеси и условий проведения процесса раствооения резиновой крошки, независимо от качества исходного битума, воспроизводимо можно добиться для получаемого БРК повышения температуры размягчения более чем на 10°С и снижения температуры хрупкости на 10°С по сравнению данными характеристиками использованного битума. Таким образом, приведенная технология показала свою универсальность в улучшении физико-механических и эксплуатационных свойств вяжущих материалов на основе дорожных битумов.

Термостабильность получаемых композитов удовлетворяет требованиям на битумы марки БНД. Проведённые санитарно-ги-гиенические исследования показали, что БРК, так же как и битум марок БНД, относится к веществам 4-го класса опасности.

В настоящее время изготовлены опытно-промышленные установки производительностью 1 и 15 тонн композита в смену, и технология пооходит испытания на дорожно-строительных предприятиях Иркутской области. Перспективная стоимость БРК, по нашим оценкам, че должна превышать стоимость битума марки БНД. Технические подробности производства БРК изложены на сайте www.сайт.

Литература

1. Смирнев Н.В. Обзор проведённой работы по применению би-тумно-резиновых композиционных вяжущих // НПГ «Информация и технология». — N.. 2004. 34 с. Режим доступа: www.bitrack.ru

2. Радзишевский П. Свойства асфальтобетона на битумно-рези-новом вяжущем // Наука и техника в дорожной отрасли. 2007. — N° 3. С 38-41.

3. Гохман Л.М. Битумы полимер-битумные вяжущие, асфальтобетон, полимерасфальтобетон. А)., Экон, 2008, 118 с.
4. American Standard ASTM 036:2006. Softening point of bituminous (ring-and-ball apparatus).

NEW TECHNOLOGIES FOR PRODUCTION OF BITUMINOUS-RUBBER COMPOSITE BINDING AGENT

Dr. V.V.Alekseenko, Ph.D. student R.G.Ditov, D.Sc. V.N.Kizhnyaev (IrkutskState University),Ing. A.V.Mituegin (Company "Mituegin").

The paper is devoted to utilization the waste automobile tires with production of binding agent, similar on quality to oil road bitumen.

Keywords: bituminous-rubber binding agent, waste automobile tires, asphalt concrete.

Вязкость пластичных смазочных материалов, в отличие от смазочных масел, зависит не только от температуры, но и от скорости деформации. Значение вязкости пластичного смазочного материала, определенное при заданной скорости деформации и температуре, является постоянным и называется эффективной вязкостью.

Предел прочности на сдвиг - минимальное напряжение сдвига, которое вызывает переход смазки к ее вязкому течению.

Предел прочности на сдвиг характеризует способность смазки удерживаться на движущихся деталях, вытекать и выдавливаться из негерметизированных узлов трения.

Температура каплепадения - температура, при которой смазка утрачивает свою густую консистенцию и переходит в состояние жидкой смазки (температура, при которой падает первая капля).

Обычно пластичную смазку применяют при температурах на 15 ... 20 °С ниже температуры каплепадения. Число пенетрации определяет степень загустения пластичного смазочного материала, которая по ГОСТ5346-78 определяется глубиной погружения в смазочный материал стандартного конуса пенетрометра за 5 с при температуре 25 °С и общей нагрузке 150 г и выражается в десятых долях миллиметра

Физико-химические характеристики

Физико-химические характеристики смазочных материалов - это система регламентированных стандартами показателей для оценки качества. Рассмотрим основные характеристики.

Номинальная плотность (при заданной температуре). Плотность сама по себе не характеризует качества смазочного материала, но ее уменьшение сопровождается снижением вязкости и температуры вспышки.

Вязкость является одной из важнейших характеристик смазочных масел, определяющих силу сопротивления масляной пленки разрыву. Например, чем прочнее масляная пленка на поверхности трения, тем лучше уплотнение колец в цилиндрах.

Вязкость динамическая - это сила сопротивления двух слоев смазочного материала площадью 1 см 2 , отстоящих друг от друга на расстоянии 1 см и перемещающихся один относительно другого со скоростью 1 см/с.

Вязкость кинематическая определяется как отношение динамической вязкости к плотности жидкости.

Температура вспышки - низшая температура вспышки паров нагреваемого смазочного материала при приближении пламени в условиях обычного давления. Температура вспышки должна быть выше температуры смазываемой поверхности.

Температура застывания - это предельная температура, при которой масло теряет текучесть по определенному допуску (масло после наклона стандартной пробирки под углом 45° остается неподвижным в течение 1 мин). Косвенно по этой температуре, можно судить о растекаемости смазочного материала по поверхности трения.

Противоизносные свойства характеризуют способность масла уменьшать интенсивность изнашивания трущихся деталей, снижать затраты энергии на преодоление трения. Эти свойства зависят от вязкости и вязкостно-температурной характеристики, смазывающей способности и чистоты масла.

Моюще-диспергирующие свойства. Моющие свойства характеризуют способность масла обеспечивать необходимую чистоту деталей двигателя и противостоять лакообразованию на горячих поверхностях, а также препятствовать прилипанию углеродистых соединений. Диспергирующие свойства характеризуют способность масла препятствовать слипанию углеродистых частиц, удерживать их в состоянии устойчивой суспензии и разрушать крупные частицы продуктов окисления при их появлении.

Противоокислительные свойства определяют стабильность масла, от которой зависит срок работы масел в двигателях, характеризуют их способность сохранять первоначальные свойства и противостоять внешнему воздействию при нормальных температурах. Стойкость моторных масел к окислению повышается при введении антиокислительных присадок.

Коррозионная активность всех масел зависит от содержания в них сернистых соединений, органических и неорганических кислот и других продуктов окисления. В лабораторных условиях антикоррозионные свойства моторных масел оценивают по потере массы свинцовых пластин (в расчете на 1 м 2 их поверхности) за время испытания при температуре плюс 140°С.

Коррозионный износ деталей определяется также исходным значением щелочности и скоростью ее изменения. Чем больше проработало масло, тем ниже становится показатель щелочности.

Содержание механических примесей и воды . Механических примесей в маслах без присадок не должно быть, а в маслах с присадками их значение не должно превышать 0,015% по массе. Механические примеси не должны оказывать абразивного действия на трущиеся поверхности. Вода в моторных маслах должна отсутствовать. Даже небольшое количество воды вызывает деструкцию присадок, происходит процесс шламообразования.

Коксуемость - склонность масла при нагревании образовывать остаток с последующим термическим разложением остатка масла в отсутствии воздуха. Коксуемость определяется как вес кокса в процентах к навеске испытуемого смазочного материала.

Зольность - наличие в смазочном материале несгораемых веществ. Зольность определяют в лабораторных условиях и выражают процентным отношением образовавшейся золы к массе пробы масла, взятой для анализа. Зольность масел, не содержащих присадок, не превышает 0,02…0,0=25% по массе. У масел с присадками зольность не должна быть менее 0,4%, а у высококачественных марок масел не менее 1,15…1,65 % по массе. Повышенная зольность способствует увеличению твердости нагара в двигателях внутреннего сгорания.

Кислотное число (КОН) характеризует содержание кислот в смазочном материале. Водорастворимой кислотой в наработавшем смазочном материале может быть серная кислота. При отсутствии водорастворимых кислот начальная кислотность смазочного материала обусловлена нафтеновыми кислотами. Возрастание кислотного числа позволяет судить о степени его окисления смазочного материала.Кислотное число определяется как количество миллиграммов едкого калия, требующегося для нейтрализации 1 г смазочного материала.

Стабильность к сдвигу - это способность масла сохранять постоянную величину вязкости под воздействием высокой деформации сдвига при эксплуатации.

Температура каплепадения является показателем температурной стойкости смазки. При достижении данной температуры, определяемой в лабораторных условиях, происходит падение первой капли смазки, нагреваемой в специальном приборе. Надежное смазывание узлов трения без вытекания смазки обеспечивается, если рабочая температура узла на 15…20°С ниже температуры каплепадения пластичной смазки.

Пенетрация характеризует густоту смазки. Значение пенетрации определяется по шкале пенетрометра. Чем выше значение пенетрации, тем меньше густота (консистенция) данного смазочного материала.

Водостойкость - характеризует способность смазочного материала противостоять растворению в воде.

За исключением вязкости, все рассмотренные показатели либо косвенно и ограниченно характеризуют поведение смазочного материала в эксплуатации, либо служат для контроля их качества при производстве, транспортировке и хранении.

Федеральное агентство по образованию Московская государственная академия тонкой химической

технологии им. М.В. Ломоносова

Кафедра технологии нефтехимического синтеза и искусственного жидкого топлива им. А.Н. Башкирова

Лихтерова Н.М., Николаев А.И.

СВОЙСТВА И МЕТОДЫ ОПРЕДЕЛЕНИЯ ИХ ХАРАКТЕРИСТИК.

Методические указания для выполнения лабораторных работ

Москва, 2008

ББК 35.514я73 УДК 541,127:665.642

Лихтерова Н.М., Николаев А.И.

БИТУМЫ. СВОЙСТВА И МЕТОДЫ ОПРЕДЕЛЕНИЯ ИХ ХАРАКТЕРИСТИК.

Методические указания для выполнения лабораторных работ М, МИТХТ им. М.В. Ломоносова, 2008, 35с.

Пособие содержит раздел посвященный свойствам битумов, а также раздел, в котором представлены методы определения физикомеханических характеристик, определяющих эти свойства.

Предназначено для студентов 4 - 6 курсов, обучающихся по направлениям высшей инженерной школы 072000 «Стандартизация и сертификация», 250400 - «Химическая технология природных энергоносителей и углеродных материалов», а также по направлению магистратуры 550808 - «Химическая технология природных энергоносителей и углеродных материалов».

Рецензент: с.н.с. ЦКП МИТХТ им. М.В. Ломоносова, к.х.н. Городский С.Н.

© МИТХТ им. М.В. Ломоносова, 2008

1. Нефтяные битумы

1.1. Свойства битумов

1.2. Сырье для производства нефтяных битумов

2. Современные отечественные нефтяные битумы

3. Экспериментальные методы определения физико-

химических характеристик нефтяных битумов

3.1. Метод определения глубины проникновения иглы

согласно ГОСТ 11501-78

3.2. Метод определения температуры размягчения по

кольцу и шару согласно ГОСТ 11506-73

3.3. Метод определения температуры хрупкости по Фраасу

согласно ГОСТ 11507-78

3.4. Метод определения изменения массы после прогрева

согласно ГОСТ 18180-72

3.5. Метод определения растяжимости согласно ГОСТ 111505-75

4. Расчетные методы определения физико-механических

характеристик битумов

1. Нефтяные битумы.

Природные битумы известны человечеству уже много тысяч лет. Помимо природного происхождения битумы могут быть получены в результате переработки нефти, сланцев, торфа и углей. В XX столетии с развитием нефтедобывающей и нефтеперерабатывающей промышленности возросло производство и потребление битумов получаемых на основе нефтяного сырья. Область их применения достаточно широка. Так они используются в качестве строительных и гидроизолирующих материалов при строительстве фундаментов зданий и кровель (изоляционные и кровельные битумы), связующего вещества при прокладке дорог (дорожные битумы) и т.д. Следует отметить, что для успешного применения битумов они должны обладать определенным набором свойств.

1.1. Свойства битумов. 1.1.1. Вязкость.

При высоких температурах битумы приближаются по своим свойствам к жидкости, а при низких приобретают свойства твердого тела. Для дорожных битумов вязкость как показатель эксплуатационных свойств важна в двух случаях. В период смешения битумов с минеральными материалами они должны иметь достаточно низкую вязкость, чтобы обеспечить легкость и эффективность смешения и укладки смеси в покрытие. В процессе работы дорожного покрытия битум должен обладать очень высокой вязкостью при повышенных температурах, обеспечивающей ему необходимую прочность. Поэтому вязкость является одной из основных характеристик структурномеханических свойств битумов. Вязкость битумов изменяется в широких пределах в зависимости от химического состава и температуры. Значительное влияние на вязкость битума оказывает количественное соотношение асфальтенов и масел. С увеличением количества асфальтенов вязкость повышается. Для повышения долговечности дорожного покрытия важно, чтобы вязкость битума в меньшей степени изменялась в интервале температур, при которых эксплуатируется покрытие.

Маркировочным признаком вязких дорожных битумов, косвенно определяющим их вязкость, служит показатель глубины проникания иглы (пенетрации) в битум при температуре 25 и 0°С. Чем больше содержание асфальтенов в битуме, тем меньше глубина проникновения иглы. Глубина проникания иглы косвенно характеризует такие эксплуатационные качества битума, как твердость, прочность и теплостойкость.

Маркировочным признаком жидких дорожных битумов служит показатель условной вязкости, характеризуемый временем истечения в

секундах 50 мл битума через отверстие 5 мм при температуре 60°С и определяемый с помощью стандартного вискозиметра.

1.1.2. Температура размягчения.

Температуру, при которой битумы из относительно твердого состояния переходят в жидкое, условно называют температурой размягчения. Температура размягчения является также условным показателем вязкости битумов при более высоких температурах. Более вязкие битумы имеют более высокую температуру размягчения. При одинаковой глубине проникания иглы битумы с более высокой температурой размягчения являются и более теплостойкими. Битумы с низкой температурой размягчения обладают низкой прочностью при повышенной температуре.

Температура размягчения зависит от состава битума. Она тем выше, чем больше отношение содержания асфальтенов к содержанию жидких компонентов битума - смол и масел.

Для качества битума большое значение имеет соотношение между показателем глубины проникания иглы и температурой размягчения. Более ценными являются битумы, у которых при данной температуре размягчения более высокий показатель глубины проникания иглы. Это означает относительно меньшую восприимчивость битумов к изменению температуры.

Таким образом, вязкость битумов оказывает существенное влияние на свойства асфальтобетонной смеси в процессе перемешивания, укладки и уплотнения, а также на строительно-технические свойства асфальтобетона. Большая вязкость битумов увеличивает прочность, водостойкость и теплостойкость асфальтобетона, но битумы с повышенной вязкостью хуже обволакивают поверхность минеральных материалов, поэтому битумы следует применять с определенной вязкостью и при определенных температурах нагрева с учетом климатических условий района строительства, вида, марки и типа асфальтобетона, категории автомобильной дороги.

Это показатель служит для эксплуатационной оценки битумов и связывает показатели температуры размягчения и глубины проникания иглы. Индекс пенетрации (И.П .) выражают в виде отвлеченного числа, определяемого по формуле:

И . П . = 1 + 30 50 А − 10

А = 2,9031 − lg П

Т − 25

где П - глубина проникания иглы при 25°С, 0,1 мм;

Т - температура размягчения, °С.

Индекс пенепрации характеризует колойдные свойства битумов, их пластические свойства и зависимость их от температуры.

По индексу пенитрации битумы разделяют на три группы:

1. битумы и ИП 2 (золь), не имеющие дисперсной фазы или содержащие сильно пентизированные асфальтены (битумы из крекингостатков или пеки из каменноугольной смолы). Эластичность таких битумов (дуктильность при 25° С) близка к нулю;

2. битумы и ИП от -2 до +2 (золь-гель) имеются элементы для образования пространственного коагуляциононого каркаса с прослойками дисперсной среды, препятствующей старению битума (битумы для дорожного строительства);

3. битумы с ИП 2 являющимися гелями и склонны к старению. Требования современного ГОСТа 22245-90 для вязких дорожных

битумов предусматривает изменение ИП от -1 до +1.

1.1.4. Растяжимость.

Растяжимость битумов оценивается по их способности растягиваться в нить определенной длины под влиянием нагрузки.

Растяжимость битумов зависит от их температуры, группового состава и структуры. Битумы с большим содержанием смол при оптимальном содержании масел и асфальтенов имеют большую пластичность. С повышением температуры растяжимость битумов увеличивается. Битумы, имеющие большую глубину проникания иглы, имеют и большую растяжимость. С увеличением содержания в битумах твердых парафинов растяжимость битумов уменьшается.

Растяжимость битумов косвенно характеризует сцепление их с минеральными материалами. С повышением растяжимости сцепление битумов с минеральными материалами повышается, что объясняется значительным содержанием в битумах ароматических соединений и смол. Растяжимость битумов при 25° С характеризует также степень структурированности битума и тип его дисперсной структуры.

С растяжимостью битума при низких температурах тесно связано одно из важнейших свойств асфальтобетона - его деформативная способность при низких температурах эксплуатации. Недостаточная деформативная способность приводит к быстрому разрушению асфальтобетона в покрытиях появляются трещины. Повышение растяжимости битумов при отрицательных температурах - важнейшая задача исследователей и инженеров.

1.1.5. Температура хрупкости.

Низшая температура, при которой битум в данных условиях испытания теряет вязкопластические свойства и становится хрупким, называется температурой хрупкости.

Температура хрупкости является одним из важнейших показателей качества дорожных, кровельных и ряда других битумов, характеризующих работу битумосодержащих материалов при низких температурах. Желательна возможно более низкая температура хрупкости битума, так как такой битум имеет лучшие пластические свойства, а дорожное или кровельное покрытия лучше работают в условиях сурового климата и холодной погоды. Покрытия из битума с высокой температурой хрупкости при низких температурах выкрашиваются, дают трещины и быстро разрушаются.

Наличие парафино-нафтеновых и моноциклических ароматических соединений обуславливает низкую температуру хрупкости, битумов.

Величину температурного интервала между температурой размягчения и температурой хрупкости называют интервалом пластичности. Битумы с широким интервалом пластичности (более 70°С) обладают повышенной деформационной способностью, стойкостью к образованию трещин при низких температурах и стойкостью против сдвига три повышенных летних температурах. Чем больше величина температурного интервала, в котором битум находится в упруговязком состоянии, тем лучше его эксплуатационные свойства. Такой битум обычно проявляет также хорошее сцепление с поверхностью минерального материала.

1.1.6. Сцепление с поверхностью минеральных материалов

(адгезия).

Способность битумов к прочному сцеплению с поверхностью минеральных частиц предотвращает выкрашивание минерального материала из монолита дорожного покрытия и обеспечивает его морозо- и водостойкость.

Сцепление битумов с минеральным материалом зависит от свойств битумов и минеральных материалов, а также от внешних условий, в которых проводится смешение и работает дорожное покрытие.

Сцепление битумов определяется полярностью молекул компонентов смеси. В битуме значительной полярностью обладают молекулы асфальтенов и асфальтотеновых кислот и их ангидридов.

Битумы хорошо сцепляются с поверхностью минеральных материалов карбонатных и основных горных пород и плохо - с поверхностью минеральных материалов кислых (содержание SiO2 более 65%) горных пород (гранит).

Сцепление битума повышается с увеличением температуры, а наличие влаги на поверхности минерального материала резко снижает сцепление битума.

К водорастворимым соединениям относятся соединения, извлекаемые водой в виде раствора или выделяющиеся из битума в виде эмульсий. Как правило, это низкомолекулярные соединения (кислоты или щелочи) и некоторые соли органических кислот.

Наличие в битуме водорастворимых соединений приводит к тому, что при контакте битума с водой происходит экстракция этих веществ. Процесс вымывания отдельных компонентов из состава, битумного вяжущего способствует образованию микротрещин (пустот) в дорожном покрытии, что в свою очередь в зимнее время приводит к его разрушению за счет расклинивающего эффекта воды в кристаллическом состоянии. Минеральный материал при этом может обнажаться, а затем выкрашиваться из дорожного покрытия.

1.1.8. Старение.

Старением принято называть совокупность необратимых изменений химического состава, структуры и свойств битумов, происходящих при воздействии на битумы различных факторов - температуры, света, воздуха, воды, минеральных материалов и механических нагрузок.

В результате старения битумы повышают свою вязкость и хрупкость. Увеличение вязкости происходит за счет изменения группового состава битумов - смолы переходят в асфальтены, асфальтены частично превращаются в карбены и карбоиды, снижается содержание ароматических соединений. При длительном хранении битума на открытом воздухе на его поверхности в результате окисления появляются трещины, шелушение, ухудшается прилипаемость к минеральным материалам. Такие изменения физических свойств и химического состава битумов связаны преимущественно с происходящими в битумах процессами окисления и полимеризации и в меньшей степени зависят от испарения легких фракций.

Характеристикой стойкости битумов против старения (стабильности) в условиях продолжительного хранения при повышенных температурах является повышение температуры размягчения после прогрева.

Битумы с большей начальной вязкостью подвержены меньшим изменениям от действия атмосферных факторов, чем битумы с меньшей начальной вязкостью. Интенсивность старения возрастает у битумов при их нагреве в присутствии минеральных материалов, выполняющих роль катализаторов. Также на интенсивность старения битума в асфальтобетонном покрытии существенное влияние оказывает объем и структура пор асфальтобетона. Большой объем открытых

9 (сообщающихся) пор, способствующих усиленной циркуляции воздуха и воды, интенсифицирует процессы старения битума. В плотных асфальтобетонах, характеризующихся замкнутыми порами, старение битума менее интенсивно. Интенсивность старения битумов тем больше, чем тоньше слой асфальтобетона.

1.1.9. Пожаробезопасность битумов.

При нагреве битумов выделяются газообразные продукты, которые в присутствии открытого пламени могут вспыхнуть. Для предохранения битумов от возгорания при их изготовлении и применении необходимо учитывать температуры вспышки и самовоспламенения.

Температурой вспышки называют температуру, при которой газообразные продукты нагреваемого битума образуют с окружающим воздухом смесь, вспыхивающую при поднесении к ней пламени.

Температурой самовоспламенения называют температуру газообразных продуктов, выделяющихся из нагретого битума, которые при смешивании с воздухом после зажигания горят не менее 5 с.

На практике по величине температуры вспышки и самовоспламенения судят о пожароопасности и ожидаемых потерях от испарения битумов.

1.2. Сырье для производства нефтяных битумов.

Основным сырьем для производства битумов являются остатки вакуумной перегонки нефти - гудроны, а также побочные продукты масляного производства - асфальты деасфальтизации, то есть асфальтосмолистые вещества, осаждаемые из гудронов, как правило, жидким пропаном. Их называют также осажденными битумами. В некоторых случаях для производства битумов применяют крекинг-остатки установки термического крекинга.

Следует отметить, что для получения качественных битумов, обладающих высокой термоустойчивостью, хорошими связующими свойствами, целесообразно применять гудроны тяжелых нефтей нафтеноароматического основания, содержащие много асфальтосмолистых веществ. Однако для производства битумов в широком масштабе приходится использовать нефти массовой добычи. Так, например, была изучена возможность получения битумов из нефтей, характеристики которых представлены в таблице 1, 22 месторождений Туркменистана.

Таблица 1 Состав нефтей месторождений Туркменистана.

Месторождения нефтей

Котур - Тепе

Котур - Тепе

Комсомоль

Зап. Челекен

Дагад-жик

Западное

Центральное

Восточное

Овал -Товал

Барса-Гелмес

Западный

Централ ьный

Парафина

Асфальтенов

Продолжение таблицы 1

Месторождения нефтей

Котур - Тепе

Прибалханский

Гограньдаг -

Западный

Восточный

Бурунс-кая

Монжук лы

Камыш-лыджа

Карадаш ли

Парафина

асфальтенов

Используя классификацию нефтей, разработанную институтом БашНИИНП (классификация 1), по содержанию в ней асфальтенов (А), смол (С) и парафинов (П) были получены результаты представленные в

Пластичные смазки.

1. Общие положения.

Пластичные смазки используют главным образом для смазывания негерметизированных (не заключенных в картеры) узлов трения автомобилей, в которых невозможно применение жидких масел.

Пластичные смазки находятся в пластичном, мазеобразном состоянии и представляют собой коллоидную (дисперсную) систему, состоящую из жидкой и твердой фаз.

В этой системе твердая фаза (загуститель) образует структурный каркас, который удерживает в своих ячейках жидкую фазу.

Жидкой фазой являются минеральные масла в объеме от 75 до 90 % по массе, твердой фазой являются загустители в виде кальциевого, натриевого, литиевого, цинкового, магниевого и бариевого мыла. Данные мыла являются жирными солями мягких металлов.

Смазки, предназначенные для смазывания узлов трения, являются антифрикционными.

Смазки, предназначенные для предохранения деталей от коррозии, являются консервационными. Консервационные смазки получают загущением минеральных масел углеводородами (парафином, церезином), находящимися при нормальной температуре (20°С) в твердом состоянии.

Выпускаются также канатные и уплотнительные смазки.

В пластичные смазки вводятся противоизносные, противозадирные и противоокислительные присадки и наполнители.

Смазки применяются для смазывания подшипников ступиц передних и задних колес, шкворней поворотных цапф, шлицевых соединений карданного вала, пальцев рессор, подшипников водяного насоса, шарниров рулевых управлений, валов педалей тормоза и сцепления, деталей электрооборудования и т.д.

2. Показатели качества смазок.

Чтобы пластичные смазки соответствовали условиям их работы в конкретном узле трения, их выбирают по нормируемым ГОСТами и техническими условиями показателям качества.

Температура каплепадения – показатель температурной стойкости смазки. Если температура плавления смазки равна рабочей температуре смазываемого узла или ниже ее, то смазка начинает вытекать из узла трения. Надежное смазывание узлов трения без вытекания смазки обеспечивается, если рабочая температура узла на 15-20°С ниже температуры каплепадения пластичной смазки.

В зависимости от значения температуры каплепадения пластичные смазки делятся на следующие виды:

а) тугоплавкие – температура каплепадения от 105 до 185°С. К ним относятся Литол-24, ЯНЗ-2, №158, ЦИАТИМ-201, имеющие загустителями литиевые или натриево–кальциевые мыла;

б) среднеплавкие – температура каплепадения от 65 до 105°С (солидол и графитная смазка УСс-А);

в) низкоплавкие – температура каплепадения не превышает 65°С. К ним относятся защитные смазки ПВК и ВТВ-1, созданные на загустителях из углеводородов.

Число пенетрации – характеризует густоту смазки и ее способность проникать в зазор между трущимися поверхностями и удерживаться там.

Пенетрацией называют величину в условных единицах, указывающую глубину погружения в испытываемую смазку металлического конуса расчетных размеров и веса в определенный промежуток времени (0,5 сек) при температуре 25°С.

Чем больше глубина погружения конуса, тем подвижнее смазка и тем выше число пенетрации. Для летних смазок число пенетрации находится в пределах 150-200 единиц, для зимних – 250-300, для всесезонных – 200-300 единиц.

Предел прочности – способность смазок удерживаться на вращающихся деталях. Определяется предел прочности в лабораторных условиях. Чем выше предел прочности, тем надежнее удерживается смазка в подшипниках качения. Оценивается предел прочности минимальной нагрузкой в г/см 2 или Па, при которой происходит сдвиг одного слоя смазки относительно другого. Чтобы смазка удерживалась в подшипниках ступиц колес автомобиля, предел ее прочности при 50°С должен быть не менее 2,0 г/см 2 .

Вязкость характеризует текучесть смазки при достаточно высоких напряжениях сдвига. По показателю вязкости оценивается прокачиваемость смазки по маслоканалам и через пресс-масленки. Для обеспечения хорошей прокачиваемости смазка должна обладать невысокой вязкостью, особенно при низкой температуре.

3. Наименование и обозначение пластичных смазок (ГОСТ 23258-78).

Наименование пластичной смазки должно состоять из одного слова. Для различных модификаций одной смазки, дополнительно к наименованию используются буквенные или цифровые индексы.

Примеры наименования : силикол, карданная, солидол С, фиол-1, литол-24 и т.д.

Обозначение смазки по ГОСТ 23258-78 кратко характеризует ее назначение, состав и свойства.

Обозначение состоит из 5 и (пяти) буквенных и цифровых индексов, расположенных в следующем порядке и указывающих:

1 – группу (подгруппу) в соответствии с назначением смазки;

2 – загуститель;

3 – температурный интервал применения;

4 – дисперсионную среду;

5 – консистенцию смазки.

3.1. В зависимости от назначения устанавливают группы и подгруппы смазок, указанные в таблице 1.

Таблица 1.

Группа Основное назначение Подгруппа Индекс Применяемость
Антифрикционные Предназначены для снижения износа и трения скольжения сопряженных деталей Общего назначения для обычных температур (солидол) С Узлы трения с рабочей температурой до 70°С
Общего назначения для повышенных температур О Узлы трения с рабочей температурой до 110°С
Многоцелевые М Узлы трения с рабочей температурой от минус 30 до плюс 130°С в условиях повышенной влажности среды
Термостойкие Ж Узлы трения с рабочей температурой 150°С и выше
Морозостойкие Н Узлы трения с рабочей температурой минус 40°С и ниже
Противозадирные и противоизносные И Подшипники качения при контактных напряжениях выше 2500 МПа (25000 кг/см 2) и подшипники скольжения при удельных нагрузках выше 150 МПа (15000 кг/см 2)
Химические Х Узлы трения, имеющие контакт с агрессивными средами
Приборные П Узлы трения приборов и точных механизмов
Редукторные (трансмиссионные) Т Зубчатые и винтовые передачи всех видов
Приработочные (графитные и другие пасты) Д Сопряженные поверхности с целью облегчения сборки, предотвращения задиров и ускорения приработки
Узкоспециализированные (отраслевые) У Для применения в отдельных отраслях техники (автомобильные и др.)
Брикетные Б Узлы и поверхности скольжения с устройствами для использования смазки в виде брикетов
Консервационные Предназначены для предотвращения коррозии металлических изделий при хранении, эксплуатации и транспортировке З Металлические изделия и механизмы всех видов, за исключением стальных канатов
Канатные Предназначены для предотвращения износа и коррозии стальных канатов К Стальные канаты и тросы, органические сердечники стальных канатов
Уплотнительные Предназначенные для герметизации зазоров Арматурные А Запорная арматура и сальниковые устройства
Резьбовые Р Резьбовые соединения
Вакуумные В Первичные и разделительные соединения и уплотнения вакуумных систем

3.2. Тип загустителя обозначают буквами русского алфавита в соответствии со следующими индексами:

кальциевое мыло — Ка; литиевое мыло — Ли; натриевое мыло — На; цинковое мыло — Цн; органические вещества — О и т.д. по ГОСТ 23258-78.

3.3. Рекомендуемый температурный интервал применения обозначают округленно до 10°С дробью. В числителе указывают (без знака минус) уменьшенную в 10 раз минимальную температуру, в знаменателе – максимальную температуру применения смазки.

3.4. Тип дисперсионной среды и присутствие твердых добавок обозначают строчными буквами русского алфавита в соответствии с индексами:

Н — нефтяное масло; У — синтетические углеводороды; К — кремнийорганические жидкости; Г — графит (твердые добавки) и т.д. по ГОСТ 23258-78.


3.5. Индекс класса консистенции
смазки обозначают арабскими цифрами в соответствии с табл. 4.

Таблица 4.

Пенетрация при 25°С по ГОСТ 5346 Индекс класса консистенции
445-475 000
400-430 00
355-385 0
310-340 1
265-295 2
220-250 3
175-205 4
130-160 5
85-115 6
Ниже 70 7

3.6. Примеры обозначений:

СКа 2/8-2. Буква «С» обозначает смазку общего назначения для обычных температур (солидол); «Ка» – загущена кальциевым мылом; «2/8» – применение при температурах от минус 20 до 80°С; отсутствие индекса дисперсионной среды – приготовлена на нефтяном масле; «2» – пенетрация 265-295 при 25°С.

МЛи 3/13-3. Буква «М» обозначает многоцелевую смазку; «Ли» – загущена литиевым маслом; «3/12» – температура применения от -30 до 120°С; отсутствие индекса дисперсионной среды – приготовлена на нефтяном масле; «3» – пенетрация 220-250 при 25°С;

УНа 3/12 э3. Буква «У» – узкоспециализированная смазка; «На» – загуститель натриевое масло; «3/12» – температура применении от -30 до 120°С; «э» – приготовлена на сложном эфире; «3» – пенетрация 220-250 при 25°С.

Характеристики наиболее часто применяемых смазок (Литол-24 и других) приведены з

Цели работы - определение пенетрации консистентных смазок.

Теория

Пенетрацией называют величину, показывающую, на какую глубину погружается в испытуемую смазку конус стандартного прибора за 5 сек. Число пенетрации численно равно глубине погружения конуса прибора, выраженной в десятых долях миллиметра. Пенетрация - показатель условный, не имеющий физического смысла, и не определяет поведение смазок в эксплуатации. В то же время, так как этот показатель быстро определяется, им пользуются в производственных условиях для оценки идентичности рецептуры и соблюдения технологии изготовления смазок.

Смазки по величине пенетрации разделяют на девять классов (таблица 7).

Таблица 7 - Классификация пластичных смазок по величине пенетрации

Пенетрация условно характеризует способность смазки сопротивляться выдавливанию из узла трения, а также определяет легкость подачи смазки в узел трения. Поэтому для зимнего периода эксплуатация берут смазки с большим значение пенетрации (250-350 единиц), чем для лета (150-250 единиц).

Число пенетрации характеризует густоту смазок. Чем выше число пенетрации, тем мягче смазка, и наоборот. Пенетрация определяется в приборе, называемом пенетрометром.

Оборудование

Оборудование, необходимое для проведения лабораторной работы

Подготовка к определению

Сущность определения пенетрации заключается в измерении при определенной температуре глубины проникновения в смазку стандартного конуса массой в 100 гр под действием собственного веса. Внутренняя чаша должна быть заполнена смазкой доверху. Поверхность смазки должна быть равномерно распределена по всей внутренней чаше и выровнена шпателем. Конус обязательно должен быть очищен от смазки, оставшейся после предыдущих опытов.

2.3. Порядок определения

Стрелка прибора на шкале (1) устанавливается на отметку «0» (рис. 2.2). Чаша прибора (4) вращением механизма (5) поднимается так, чтобы конус прибора (3) касался поверхности смазки.

Затем в течении 5 сек нажимается кнопка (2) и по шкале (1) определяется пенетрация испытуемой смазки.

Рисунок. 24. Чаши, заполненные испытуемыми смазками

Рисунок. 25. Схема пенетрометра

1 – шкала прибора; 2 – кнопка; 3 – конус прибора;

4 – чаша со смазкой; 5 – механизм вращения чаши

Рисунок. 26. Пенетрометр

Порядок выполнения работы

1. Достаньте из шкафа чашу со смазкой, тюбик с той же смазкой, шпатель для разравнивания и переместите их на стол.

2. Визуально убедитесь, что смазка полностью заполняет чашу. Если заполняет не полностью, то открутите колпачок с тюбика, возьмите его в руки и примените к чаше. Далее разровняйте смазку шпателем, также применив его к чаше.

3. Установите чашу на прибор. Поворачивая чашу, выкрутите механизм поднятия чаши, до соприкосновения смазки с конусом.

4. Нажмите на кнопку. При этом в течение 5 секунд произойдет опускание конуса в смазку. Стрелка шкалы прибора покажет число пенетрации.

5. Затем поднимите конус за ось, связанную с ним, до показания шкалы «0». Скрутите чашу, поставьте ее на стол и при помощи шпателя разровняйте смазку и повторите с ней опыт не менее 4-х раз. Те же действия проведите с остальными смазками.

Обработка результатов

Измерений в данном опыте должно быть не менее 5. По полученным результатам найдите среднее арифметическое значение и сравните с ним все отсчеты. Во внимание принимаются только те отсчеты, которые отличаются от среднего арифметического не более чем на ±3%. При расхождении результатов отсчетов на большее значение, измерения повторяют. Результаты измерений сводятся в таблицу.

Результаты определения

В итоге делается вывод о густоте исследуемой смазки, соответствии ее стандартным значениям и возможности применения в соответствующих узлах трения (см. приложения 1,2).

Приложение 1

Таблица 8 - Характеристики основных смазок, применяемых на автомобилях

Смазка Цвет Класс консистенции Темп. интервал применения, °С Коллоидная стабильность Испаряемость Водостойкость Смазывающие св-ва Взаимозаменяемость
Солидол С От светло- до темно-коричневого -20-65 Литол-24
Пресс-солидол То же -30-50 Фиол-1
Графитная Черный с серебристым оттенком -20-60 ЛСЦ-15 ШРУС-4
ЦИАТИМ-201 От желтого до светло-коричневого -60-90 Фиол-1
1-13 От светло- до темно-желтого -20-100 Литол-24
Литол-24 Коричневый -40-120 ЛСЦ-15
ФИОЛ-1 Коричневый -40-120 Литол-24
ЛСЦ-15 Белый -40-130 Литол-24
ШРБ-4 От коричневого до темно- коричневого -40-130 ШРУС-4 Литол-24
ШРУС-4 Серебристо- черный -40-120 ШРУС-4 Литол-24
ВТВ-1 Белый -40-40 ЛСЦ-15
Униол-1 Коричневый -30-150 ШРБ-4 ШРУС-4
№ 158 Синий -30-100 ШРУС-4

Приложение 2

Таблица 9 - Ассортимент, области применения и основные эксплуатационные характеристики смазок

Смазка (ГОСТ, ТУ) Область применения Основные эксплуатационные характеристики Состав
1-13 (ТУ 38.5901257-90) Заменитель: Литол-24 Разнообразные подшипники качения, реже - скольжения; подшипники электродвигателей, ступиц колес устаревших автомобилей и т.п. Водостойкость низкая, при контакте с водой эмульгирует и растворяется в ней. Работоспособная при t= -20...+110 0 С Смесь нефтяных масел низкой и средней вязкости, загущенная натриевым мылом жирных кислот касторового масла; содержит немного кальциевого мыла тех же жирных кислот
№158 (ТУ 38 УССР 101320-77) Заменители: ШРУС-4, Фиол-2У Подшипники качения автотракторного оборудования, игольчатые подшипники карданных шарниров непостоянной угловой скорости Хорошие антиокислительная и механическая стабильности, противоизносные характеристики, водостойкость - удовлетворительная. Работоспособна при t= -30...+110 0 С
АМ-карданная (ТУ 38.5901302-91) Заменители: ШРУС-4, Литол-24 Шарниры карданов постоянной угловой скорости передних ведущих мостов автомобилей Вымывается из узлов трения, низкая механическая стабильность. Работоспособна при температуре - 10...+100 0 С Нефтяное масло средней вязкости, загущенное натриевым мылом кислот саломаса, хлопкового, касторового и канифоли
Графитная (ГОСТ 3333-80) Заменители: Солидол С, Солидол Ж или Литол-24 с добавлением 10% графита Узлы трения скольжения тяжелонагруженных тихоходных механизмов; рессоры, подвески тракторов и машин, открытые зубчатые передачи, опоры буровых долот и т.п. Работоспособна при t= -20...+70 0 С; допускается к применению при температуре ниже -20 0 С в рессорах и аналогичных устройствах Высоковязкое нефтяное масло, загущенное кальциевым мылом с добавлением 10% графита
Дисперсол-1 (ТУ 38 УССР 201144-72) Механизмы стеклоподъемников, замки, двери и другие детали автомобилей Гигроскопична. Работоспособна при t= -40...+100 0 С Нефтяное масло, загущенное комплексным кальциевым мылом стеариновым 12–гидроксистеариновой и уксусной кислот и церезином; содержит уайт-спирит
ДТ-1 (ТУ 38 УССР 201116-76) Сборка деталей систем гидроприводов автомобилей, работающих в контакте с резиновыми изделиями Не вызывает набухания резиновых изделий, высокие противоизносные и противозадирные свойства, растворима в воде. Работоспособна при t= -30...+110 0 С Касторовое масло, загущенное натриевым мылом кислот касторового масла; содержит графит и другие антифрикционные добавки
Зимол (ТУ 38 УССР 201285-82) Заменители: Лита (до 1000С), ЦИАТИМ-201 (до 900С) Узлы трения любых типов транспортных средств и инженерной техники, эксплуатируемых в районах с особо холодным климатом Высокая механическая и химическая стабильности, водостойкость, хорошие противоизносные и защитные свойства; всесезонная. Работоспособна при t= -50...+130 0 С Средневязкое высокоиндексное низкотемпературное нефтяное масло, загущенное гидроксистеаратом лития; содержит антиокислительную, антикоррозионную присадки и антифрикционную добавку
Консталин (ГОСТ 1957-73) Заменители: Литол-24, Литол-459/5, 1-13 Узлы трения вентиляторов литейных машин, доменных и цементных печей, подшипников качения на ж/д транспорте и др. Водостойкость низкая, при контакте с водой эмульгирует и растворяется в ней. Работоспособна при t= -20...+110 0 C Цилиндровое масло, загущенное натриевыми мылами жирных кислот касторового масла
КСБ (ТУ 38 УССР 201115-76) Контакты электрического переключателя указателя поворота автомобилей Токопроводящая, предотвращает искрение в контактах и снижает радиопомехи, обеспечивает полный ресурс работы узлов трения. Работоспособна при t= -30...+110 0 С Нефтяное масло, загущенное натриевым мылом стеариновой кислоты и кислот саломаса; содержит антиокислительную и противоизносную присадки, медную пудру и другие добавки
ЛЗ-31(ТУ 38.101 1144-88) Заменители: Литол-24 Подшипники качения закрытого типа на весь срок службы Хорошая антиокислительная стабильность и антикоррозионные свойства, низкая испаряемость, высокие противоизносные свойства, при контакте с водой дисперсионная среда гидролизуется. Работоспособна при -40...+120°С Сложный эфир, загущенный стеаратом лития; содержит антиокислительную и антикоррозионную присадки
ЛЗ-ПЖЛ-00 (ТУ 0254-3 12-001488220-96) Шарнир равных угловых скоростей промежуточного вала автомобиля ВАЗ-2 1213 Обеспечивает работоспособность ШРУС в течение всего срока службы автомобиля. Работоспособна при t= -40...+120 0 С Нефт. масло, загущенное литиевым мылом 12- оксистеариновой кислоты; содержит антиокислительную, противоизносную, противозадирную, адгезионную присадки и дисульфид молибдена
Литин-2 (ТУ 0254-311-00148820-96) Заменитель: Литол-24 Игольчатые подшипники карданных шарниров и других узлов автомобилей Высокие трибологические и адгезионные свойства. Работоспособна при t= -40...+120 0 С Мин. масло, загущенное литиевым мылом 12-оксистеариновой кислоты и аэросилом; содержит антиокислительную, противоизносные, противозадирную, адгезионную и противокоррозионную присадки

Лабораторная работа № 6

Поделитесь с друзьями или сохраните для себя:

Загрузка...