Какое графическое 3d ядро у сапр leapfrog. Путешествие в центр сапр

Обзор ядер геометрического моделирования

Как известно, в центре Земли находится ядро. Именно в нем сосредоточена значительная часть энергии нашей планеты. Аналогичная ситуация наблюдается и в мире САПР. Основой и движущей силой каждой системы служит ядро.

Двигатель САПР

Ядро - это набор математических функций, который предназначен для точного математического представления трехмерной формы изделия и управления этой моделью. Полученные с его помощью геометрические данные используются системами автоматизированного проектирования (CAD), технологической подготовки производства (CAM) и инженерного анализа (САЕ) для разработки конструктивных элементов, сборок и изделий. Проектировщик получает доступ к функциям ядра из соответствующей САПР через графический пользовательский интерфейс. Таким образом, ядро имеет очень важное значение. Не зря его иногда называют "двигателем" системы проектирования. Именно оно определяет ее функциональные возможности и производительность.

Кроме того, от "начинки" зависит совместимость системы с другими САПР. Ведь ядро задает формат хранения моделей. Поэтому продукты, основанные на одном и том же ядре, могут читать проекты из других "братских" САПР как свои собственные. Это позволяет точно передавать геометрические и топологические параметры модели. И напротив экспорт данных из "неродных" систем сопряжен с трудностями. Для этого применяются конверторы и трансляторы, которые выполняют преобразование форматов либо напрямую (из одной системы в другую), либо через стандарты геометрического моделирования (например, IGES или STEP). Но в любом случае полной точности добиться не удается.

Сегодня в мире существует несколько десятков известных математических ядер. Исторически сложилось так, что они разделились на три типа: частные, лицензируемые и с открытым кодом. Рассмотрим особенности каждого из них.

Свое ядро ближе к САПР

Наиболее "старыми" являются частные ядра, которые создаются и развиваются только для использования с конкретной системой проектирования. Именно на них были основаны первые САПР, появившиеся еще на заре компьютерной эры. И сейчас многие компании придерживаются такого же подхода. В их числе поставщик тяжелой САПР - Dassault Systemes, разработчики систем среднего класса - think3 и VX Corporation, отечественные фирмы - АСКОН, "ГеММа", "Кредо" и др.

У своего ядра есть немало преимуществ. Во-первых, тесная интеграция с интерфейсом приложения расширяет проектировщику доступ к функциям ядра и тем самым упрощает его работу. Например, он может сколько угодно раз выполнять операции отката или повторного выполнения задания. Во-вторых, разработчик САПР может делать ядро под собственные нужды, создавая только ту функциональность, которая требуется для конкретной системы. В-третьих, у него есть возможность быстро устранять ошибки и оптимизировать свой продукт по скорости работы и по объему данных. "Собственное ядро - гибко и управляемо, изменения вносятся в него настолько оперативно, насколько это требуется самому создателю САПР", - объяснил Евгений Бахин, директор по стратегическому развитию компании АСКОН.

Кроме того, нельзя забывать финансовый фактор. При использовании покупного ядра его стоимость закладывается в цену продукта. Более того, даже за написание модулей импорта-экспорта в форматы готовых ядер нужно платить. От этого избавлены владельцы своего механизма. "Если применяется собственное ядро, то его доля в цене САПР, как правило, оптимальна и не зависит от изменений лицензионной политики стороннего разработчика", - утверждает г-н Бахин.

Но, как известно, ничего не дается даром. "Создание геометрического ядра - действительно дело сложное, - сказал Прокопий Николаев, начальник отдела разработки компании "ГеММа". - У нас такое решение сложилось исторически. В начале 90-х, когда мы начали создавать ГеММу-3D, в нашей стране не было принято использовать готовые решения для обеспечения базовой функциональности системы. Тогда практически все разработчики САПР строили продукты с нуля в меру своих сил и умения". Но для этого требовались квалифицированные специалисты в области вычислительной геометрии и компьютерной графики. Без них построить геометрическое ядро невозможно. "Найти специалиста, свободно разбирающегося в каверзных вопросах вычислительной геометрии, да еще и имеющего практический опыт, - задача очень непростая", - подчеркнул г-н Николаев.

Помимо опытных кадров нужны еще и деньги. "Разработка ядра - чрезвычайно наукоемкое и дорогостоящее дело, - сказал генеральный директор АСКОНа Александр Голиков. - На первом этапе фактически вся наша прибыль от продажи редактора конструкторской документации "КОМПАС-График" инвестировалась в написание нового математического ядра, не обеспечивавшего, естественно, в тот момент сиюминутной экономической отдачи". При этом инвестировать нужно в течение довольно длительного времени. Ведь быстро хороший продукт не получишь. "Для создания ядра с нуля до достижения уровня функциональности и надежности, необходимого для выполнения большинства задач машиностроительного проектирования, потребуются приблизительно 20 человек и около пяти лет работы", - сообщил Владимир Панченко, руководитель аналитического отдела подразделения АСКОН-Коломна (именно здесь осуществляется разработка математического ядра КОМПАС-3D и самого CAD-продукта).

Конечно, 100 человеко-лет - это немало. Неужели задачи геометрического моделирования так сложны? Оказывается, что главную трудность представляет не столько реализация стандартных функций ядра, сколько его "шлифовка" - отработка функционала и обеспечение высокой надежности. "Этого невозможно добиться одним только тестированием, - объяснил г-н Панченко. - Совершенно необходимо успешное практическое применение ядра вместе с САПР на реальных рабочих местах. Никто не будет покупать ядро и базирующуюся на нем систему, если оно ненадежно, а его функционал непригоден для использования".

Мало создать хорошее ядро, его нужно постоянно совершенствовать. Ведь требования к ядру меняются со временем. "Они зависят от очень многих факторов: круга решаемых задач, мощности вычислительной техники, да и просто от текущей моды на внешнее представление геометрических данных, - рассказал Прокопий Николаев. - Поэтому процесс улучшения ядра никогда не прекращается. При этом не только создаются новые функции, но и зачастую переделываются отлаженные части. Таким образом, идет его постоянная подстройка под текущие нужды разработчиков САПР".

Ядро напрокат

Трудоемкость создания собственного ядра заставляет некоторых игроков идти другим путем и брать готовый продукт. "Первоначально мы разрабатывали собственное ядро, часть его функций и сейчас используется в нашей системе, - рассказал Виталий Талдыкин, директор по маркетингу компании "Топ Системы". - Однако вскоре выяснилось, что это задача огромной сложности. Можно довольно быстро сделать прототип ядра, который будет выполнять основной набор требуемых функций на тестовых примерах, но потом выясняется, что для решения реальных задач нужно постоянно совершенствовать алгоритмы, учитывать частные случаи и т. д. При этом объем и сложность программного кода вырастают нелинейно, и объективно говоря, трудоемкость получения собственного промышленного ядра составляет сотни человеко-лет". По мнению Талдыкина, небольшая группа, пусть даже и одаренных людей, не может создать ядро, решающее все основные задачи геометрического моделирования на всем множестве практических примеров. "Одного таланта здесь недостаточно, - уверен г-н Талдыкин. - Это гигантский, кропотливый труд". Поэтому компания "Топ Системы" решила строить САПР на базе готового механизма.

Лицензируемое ядро разрабатывается и поддерживается одной компанией, которая продает на него лицензии другим создателям САПР. Пионером в "ядерном" бизнесе стала компания UGS, которая в 1988 г. выпустила в продажу ядро Parasolid, составляющее основу ее системы Unigraphics. В 1990 г. ее примеру последовала фирма Spatial Technologies, представившая ядро ACIS. Сейчас эти два продукта используются во многих известных системах твердотельного моделирования. Так, ACIS применяется в AutoCAD и Mechanical Desktop (Autodesk), TurboCAD (IMSI), CADKEY (Kubotek), а Parasolid - в SolidWorks (Dassault Systemes), Solid Edge (UGS), MicroStation (Bently), T-Flex ("Топ Системы"). В 2001 г. в лагерь сторонников лицензируемого ядра перешла компания PTC и начала распространять лицензии на Granite One - основу своей САПР Pro/ ENGINEER.

В общей сложности лицензируемые ядра составляют основу более сотни САПР, а число пользователей насчитывается миллионами. Таким образом, "ядерный" бизнес оказался весьма выгодным, причем с точки зрения как финансов, так и влияния на отрасль. Ведь от владельца ядра зависят многие другие игроки. Недаром в 2000 г. фирму Spatial купила Dassault Systemes, которая сейчас занимается развитием ядра ACIS. Активно совершенствует ядро и UGS. В частности, в октябре прошлого года она приобрела фирму D-Cube, чтобы встроить в Parasolid ее функции геометрического моделирования.

Разработчик получает доступ к документированным функциям ядра через интерфейс прикладного программирования (API). "Но это не значит, что мы используем только функциональность ядра и больше ничего, - подчеркнул Виталий Талдыкин. - Наши программисты самостоятельно пишут команды трехмерного моделирования с помощью мощных средств параметрического ядра системы T-FLEX. Это позволяет нам иметь ряд конкурентных преимуществ перед другими САПР, реализованными на Parasolid". Аналогично поступают и другие поставщики САПР, поэтому системы, построенные на базе одного и того же ядра, различаются по производительности и функционалу.

Компания Vero International Software использует Parasolid для создания систем проектирования пресс-форм, совместимых с различными САПР

Главное преимущество готового ядра заключается в том, что оно избавляет разработчиков САПР от решения трудоемких задач создания собственного механизма твердотельного моделирования и дает возможность сконцентрироваться на конкретной задаче, освобождая их от знания тонкостей внутреннего представления геометрических объектов. "Использование лицензируемого ядра позволяет резко сократить сроки разработки системы, повысить качество и функциональность решения и в результате быстро вывести систему в разряд пригодных к серьезному промышленному внедрению", - сказал г-н Талдыкин.

Именно так в середине 90-х поступили создатели первых систем среднего класса - SolidWorks и Solid Edge. И оказались правы: эти продукты совершили революционный переворот в мире САПР и успешно развиваются до сих пор.

У владельца ядра может быть свой интерес. Ведь открывая к нему доступ, он расширяет число приложений, совместимых со своей САПР и между собой. "Выпуская Granite One в качестве самостоятельного продукта, компания PTC не только сделала доступной базовую функциональность системы Pro/ENGINEER, но и обеспечила разработчиков инструментом для улучшения взаимодействия с этой САПР", - сказал Дмитрий Мотовилов, специалист из фирмы PTS, реселлера компании PTC.

Однако использование чуждого ядра имеет и оборотную сторону. Ведь даже имея лицензию, разработчик не может "залезть" внутрь ядра и подправить какой-либо базовый алгоритм для его улучшения. Но Виталий Талдыкин считает это положительным качеством: "Для творческих людей экспериментаторского склада это - весьма существенный недостаток, но если мы говорим о системе, которая сама является качественным промышленным изделием, то это скорее преимущество".

Кроме того, проблему может создать зависимость разработчиков от поставщика ядра. Ведь не известно, как сложится судьба этого поставщика. А вдруг он уйдет с рынка, перестанет развивать ядро или изменит правила лицензирования? Эти опасения не лишены основания. Например, с непростой ситуацией в свое время столкнулась компания "Топ Системы". "До Parasolid мы на протяжении нескольких лет использовали ACIS, но начавшаяся неразбериха с этим ядром, которая приводила к выпуску откровенно "сырых" версий, вынудила нас искать альтернативные решения, - рассказал г-н Талдыкин. - Немаловажную роль сыграла и странная политика лицензирования важных функций, которой придерживалась Spatial. Из-за этого разные разработчики оказывались в неравном положении в плане доступа к функциональности ядра. Были и другие проблемы. В результате мы перешли на Parasolid и ни разу не пожалели о своем выборе". Но, несмотря на такой опыт, он считает проблему зависимости преувеличенной: "Степень такой зависимости не превышает обычные житейские риски; например, где гарантия того, что главные разработчики "собственного" ядра не уволятся"?

К счастью, сейчас опасаться за судьбу ACIS и Parasolid не приходится. Это - зрелые продукты, существующие более десятка лет. В прошлом году у ACIS вышла 14-я версия, а у Parasolid - 16-я. Они принадлежат двум лидерам рынка САПР - компаниям UGS и Dassault, прочное положение которых сейчас не подвергается сомнению. О стабильности ситуации свидетельствует также сложившаяся вокруг ядер парадоксальная ситуация. Так, Parasolid составляет основу системы SolidWorks, которую выпускает компания Dassault - главный соперник UGS, а Autodesk использует в системе AutoCAD ядро ACIS, принадлежащее Dassault. Вроде бы все эти компании жестко конкурируют между собой, но в то же время - предоставляют друг другу лицензии на ядра. Видимо, совместно развивать рынок выгоднее.

На базе ядра ACIS компания Digital ArtForms

построила систему трехмерной графики

Впрочем, еще недавно обстановка в области механизмов моделирования была далеко не такой спокойной: между поставщиками Parasolid и ACIS бушевала война ядер: они беспрерывно снижали цены и выпускали новые версии так часто, что пользователи не успевали на них переходить. Но в 2001 г. воюющие стороны устали от "боевых" действий и предпочли заключить перемирие. Договорившись о взаимном лицензировании, они с помощью трансляторов обеспечили возможность обмена моделями между САПР с разными ядрами.

Ядро с открытым кодом

Механизмы моделирования этого типа появились позднее вышеописанных предшественников и представляют собой некоторое промежуточное звено. С одной стороны, они похожи на лицензируемые ядра, поскольку разработчик САПР получает на них лицензию у сторонней компании, а с другой - на собственные, поскольку открывают пользователю доступ к исходному коду и позволяют вносить в него изменения по своему усмотрению.

Наиболее известны два ядра с открытым кодом: Open CASCADE и комплект компании Solid Modeling Solutions (SMS), включающий программы геометрического моделирования SMLib, NLib, GSLib, TSNLib и SDLib. Оба представляют собой библиотеки функций геометрического моделирования и распространяются с открытым исходным текстом, но с одним существенным отличием: Open CASCADE можно использовать бесплатно, а за SMS нужно платить.

Open CASCADE имеет глубокие исторические корни. Его основу составляет CAS.CADE - платформа известной САПР Euclid компании Matra Datavision. Когда в 1998 г. ее купила Dassault, проект Euclid был закрыт, а ядро - опубликовано в Интернете под названием Open CASCADE. Сейчас оно принадлежит французской компании Principia Research & Development, развивающей это ядро и предоставляющей платные услуги по созданию специализированных приложений на его базе. В мае 2003 г. вышла пятая версия Open CASCADE, а сам код загрузили уже более 10 тыс. пользователей. Большой вклад в рост его популярности вносит образовавшееся вокруг него сообщество разработчиков. Они не только его используют, но и активно совершенствуют. Ведь в соответствии с принципами Open Source они должны открывать доступ к своим разработкам всем желающим.

Компания SMS пошла другим путем. Она продает лицензии на свои продукты, но утверждает, что они обойдутся гораздо дешевле, чем создание и поддержка собственного ядра. Тем более что через два года заказчик получает на них полное право и может больше не платить за лицензию. Правда, тогда он лишится новых версий и поддержки. Важное значение для стратегии SMS имеет ее независимость от крупных поставщиков САПР. Это - частная компания, принадлежащая сотрудникам и не имеющая партнеров. Штат ее невелик, но опыт в области геометрического моделирования довольно большой. В 1998 г. она выпустила библиотеку SMLib (сейчас поставляется версия 6.5), в 2002-м - дополнительные продукты TSNLib, GSNLib и NLib, а в 2004-м - SDLib.

Ядра с открытым кодом открывают возможность выбора перед компаниями, которые не хотят использовать лицензируемый механизм моделирования, но не имеют средств для разработки собственной платформы. Но такие ядра пока не особенно популярны. Одна из причин этого - недоверие к качеству данного ПО. "Проектов на базе ядра с открытым кодом очень мало, - сказал Прокопий Николаев. - Ведь непонятно, что проще - написать свой код или разобраться с чужим". С ним согласен Виталий Талдыкин: "Это некоторая диковинка на рынке. Насколько мы знаем, в промышленном масштабе они применяются еще очень редко. Исправлять чужие ошибки в огромном программном комплексе - сомнительное удовольствие".

Выбор за пользователем

"Вопрос о том, что лучше - использовать чужое или сделать самому, останется вечным, - подвел итог Прокопий Николаев. - В каждом конкретном случае решение будет приниматься индивидуально, с учетом текущих объективных и субъективных факторов. Готового рецепта нет, так как у каждого варианта есть как преимущества, так и недостатки".

Более 20 лет руководил проектами и исследовательскими группами в НИИ ядерной физики МГУ. Затем - развитием новых проектов в Intel Technologies. С 2011 года - директор по науке и технологиям в ИТ-кластере «Сколково». Автор более двухсот научных публикаций и патентов, доктор физико-математических наук, эксперт в «Роснано» и РВК. Совмещает глубокую научную компетенцию с бизнес-экспертизой.

Алексей Ершов, гендиректор компании «Ледас»

В 1999 году пришел в «Ледас» на должность разработчика ПО. Впоследствии стал главным технологом, руководил ключевыми проектами компании в области геометрических решателей. В 2007 году защитил кандидатскую диссертацию в области геометрических ограничений. В 2011 году стал гендиректором группы. Автор 20 научных работ.

Кто разработал

С 1995 года разработкой ядра C3D руководит кандидат технических наук Николай Голованов. Юрий Козулин отвечает за разработку алгоритмов моделирования, Александр Максименко - за разработку решателя геометрических ограничений, Эдуард Максименко - за разработку прикладного ПО. Под их началом трудятся восемь математиков-программистов.

Разобраться со спецификой зарубежных рынков САПР команде C3D Labs помогают иностранные консультанты, специализирующиеся на компьютерном инжиниринге, - Кен Версприлл, Джоел Орр, Ральф Грабовски и другие.

Клиенты и партнеры

Помимо материнской компании «Аскон», в портфеле C3D Labs 16 заказчиков.

Ядро покупают компании различного профиля. Например, Solar Tech использует его в разработке программы для станков ЧПУ, а Elecosoft Consultec - в создании системы моделирования деревянных лестниц.

Коммерческие продукты на базе ядра C3D разрабатывают технологические партнеры C3D Labs - новосибирская компания «Ледас», томская компания Rubius , индийская компания ProtoTech Solutions и южнокорейская Solar Tech. Кроме того, «Ледас» выступает международным реселлером C3D, а Solar Tech - официальным дистрибьютором ядра на рынках Южной Кореи, Китая и Японии.

Аркадий Камнев

К нам постоянно поступают запросы на тестирование C3D. Это и учебные заведения, и разработчики-стартаперы, и крупные коммерческие организации. Период от первого обращения к нам до принятия решения о лицензировании ПО довольно длительный (от полугода и больше), поэтому сообщать о новых пользователях пока рано. Но мы уверены, что южнокорейской и шведской компаниями список наших иностранных клиентов не ограничится, и скоро мы расскажем о новом зарубежном ПО, созданном на базе российского ядра C3D.

Как зарабатывают

Условия использования ядра обсуждаются индивидуально с каждым заказчиком. Сначала C3D Labs предоставляет бесплатную тестовую лицензию на 3 месяца, которая предполагает полноценную техподдержку от разработчиков. Дальше клиент выбирает лицензию на внутреннее использование, коммерческое использование или дистрибьюцию. Стартапам и вузам C3D Labs предоставляет ядро на льготных условиях.

Аркадий Камнев

менеджер по продукту C3D Labs

Для стартапов у нас действует специальная программа лицензирования ядра. Мы сами являемся стартапом, поэтому отлично понимаем запросы небольших компаний и легко находим с ними общий язык.

Клиенты оплачивают лицензию раз в год. Опционально они могут подключить платную расширенную техподдержку. При выпуске коммерческих продуктов на базе ядра заказчик ежеквартально перечисляет компании фиксированный роялти.

Конкуренты

На несколько сотен разработчиков САПР в мире приходится два десятка разработчиков геометрических ядер. Большинство ядер предназначено исключительно для внутреннего использования либо для слишком узкого спектра задач. «Геометрических движков немного из-за колоссальной трудности их создания и относительной молодости базовой для сферы автоматизированного проектирования науки - компьютерной геометрии», - объясняют в C3D Labs.

Полноценные САПР сторонние разработчики могут создать на базе всего пяти коммерческих ядер (Parasolid, ACIS, C3D, CGM и Open CASCADE). Лидеры глобального рынка - ACIS от французской Spatial (дочка Dassault Systemes) и Parasolid от немецкой Siemens PLM Software. На их основе разработано большинство мировых систем 3D-проектирования.

Николай Суетин

Геометрическое ядро – наиболее трудоемкий компонент систем трехмерного моделирования. Затраты на его разработку крайне высоки, поэтому на мировом рынке представлено так мало коммерческих ядер. А наиболее функциональные из них принадлежат крупным западным разработчикам САПР. Уже более 10 лет на рынке 3D-компонентов не появлялись новые игроки. Сейчас на этом сегменте лидируют Parasolid (Siemens PLM Software, Германия) и ACIS (Dassault Systemes, Франция).

Кстати, в 2011 году на базе МГТУ «Станкин» началась разработка еще одного российского геометрического ядра - RGK (Russian Geometric Kernel). В 2013 году проект был сдан заказчику - Минпромторгу, но на рынок пока не вышел.

Как говорят в C3D Labs, напрямую их продукт не конкурирует с остальными популярными коммерческими ядрами, заняв промежуточную ценовую нишу.

Аркадий Камнев

менеджер по продукту C3D Labs

ACIS, CGM и Parasolid слишком дороги для многих разработчиков. Да и большие компании не так отзывчивы к нуждам маленьких по их меркам клиентов - что естественно. А для разработчиков инженерного ПО скорость обработки их запросов часто довольно критична. Мы так же функциональны, как лидеры рынка, плюс очень быстро реагируем на запросы наших клиентов. Если говорить об OpenCASCADE, у него другая схема лицензирования. Само ядро предоставляется бесплатно, оплачиваются только сервисные функции. Им обычно пользуются небольшие ИТ-компании и предприятия, которые имеют ограниченные бюджеты на разработку и пытаются обойтись малой кровью.


Рынок ядер

Открытых данных об объеме рынка геометрических ядер нет. Традиционно этот сегмент еще более закрытый, чем сфера САПР. Разработчики ядер получают роялти от каждой проданной системы автоматизированного проектирования, поэтому о состоянии их бизнеса можно судить по развитию рынка САПР.

Выводы

Алексей Ершов

гендиректор компании «Ледас»

Одно из важных преимуществ команды C3D - открытость, способность и желание учитывать специфические потребности и возможности партнеров. «Ледас» лицензировал C3D для встраивания в свою программную компоненту LGC контроля изменений в 3Д-моделях в том числе потому, что другие производители геометрических ядер не хотели с нами сотрудничать. Они привыкли работать только с производителями конечно-пользовательских продуктов, их типовые договора не учитывают других возможностей, и они не готовы адаптировать свои бизнес-процессы под конкретного клиента. А команда C3D легко пошла нам навстречу. По-моему, C3D Labs удалось найти свою нишу на рынке, а это залог успеха. Речь о компаниях, нуждающихся в качественном геометрическом ядре, которым недостаточно возможностей и производительности бесплатных аналогов, но не готовых платить столько, сколько требуют владельцы Parasolid и ACIS с их многомиллионными оборотами. Причем это достаточно широкий спектр компаний, в который попадают и разработчики САПР, и промышленные центры, которым C3D нужен для внутренного использования, и производители программных компонент, как моя компания «Ледас».

Николай Суетин

директор по науке ИТ-кластера «Сколково»

Создатели компании C3D Labs работали над алгоритмами C3D более 17 лет. Это позволило им преодолеть высокий порог входа на рынок, недоступный командам без опыта. C3D - единый компонент для решения всех трех задач геометрического моделирования: создание геометрической модели, наложение взаимных связей на элементы модели, конвертация данных. Другого такого универсального компонента на мировом рынке не существует. Инновационность геометрического ядра C3D состоит в использовании уникальных математических алгоритмов, заложенных в основу вычислений. Моделируемые объекты в геометрическом ядре C3D описываются точными математическими поверхностями, что позволяет «бесшовно» соединить их по краям. При этом форма поверхностей может быть сколь угодно сложной. Обрезка и стыковка поверхностей выполняется одновременно с построением модели. Это возможно благодаря оригинальным методам построения геометрической модели и организации данных.

Рекомендации устанавливают общие требования к архитектуре ядра САПР в целом и составляющих его частей. Рекомендации предназначены для использования на всех этапах разработки конструкторско-технологических САПР общемашиностроительного применения.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
(Госстандарт СССР)

Всесоюзный научно-исследовательский институт
по нормализации в машиностроении
(ВНИИНМАШ)

Утверждены

Приказом ВНИИНМАШ
№ 395 от 16.12.1987
г.

Общесистемное ядро САПР
машиностроительного применения.

Общие требования

Р 50-54-38-88

Москва 1988

Настоящие Р устанавливают общие требования к архитектуре ядра САПР в целом и составляющих его частей. Применение Р позволяет решать задачи конструкторско-технологического проектирования в САПР, возникающие при разработке интегрированных производственных систем.

Программно-методический комплекс ядра САПР может использоваться как разработчиками САПР при создании типовых проектных процедур, так и конечными пользователями САПР при решении конкретных проектных задач.

Терминология по ГОСТ 22487-77.

1 . ОСНОВНЫЕ ПОЛОЖЕНИЯ

1.1 . Ядро САПР представляет собой программно-методический комплекс (ПМК «Ядро САПР»), предназначенный для построения объектно-ориентированных автоматизированных проектных процедур конструкторско-технологического проектирования.

1.2 . Автоматизированная проектная процедура, создаваемая с помощью средств ПМК «Ядро САПР», включает операции, выполняемые конечным пользователем.

1.3 . Средства ПМК «Ядро САПР» служат для создания процедуры трех типов.

1.3.1 . Определение объекта. В этом случае при выполнении процедуры в памяти системы последовательно строится информационная структура, отображающая конструкцию проектируемого объекта (детали, сборочной единицы). Конструкция создается из набора конструктивных элементов, ориентированного на данную предметную область.

1.3.2 . Преобразование объекта. Процедуры данного типа оказывают такие воздействия на объект, в результате которых происходят изменения его формы, конструкции и (или) масштаба. Операторы преобразования входят в состав ПМК «Ядро САПР».

1.3.3 . Установление отношений данного объекта с другими. Эта процедура позволяет создавать сложные композиции из элементарных объектов путем задания между ними различных типов отношений. Наборы таких отношений, ориентированные на данную предметную область, выполняют средствами ПМК «Ядро САПР». Таким образом, ПМК «Ядро САПР» объединяет совокупность инструментальных и технологических средств построения проектных процедур.

С помощью инструментальных средств создаются по определенной методике объектно-ориентированные компоненты САПР. Технологические средства представляют собой готовые компоненты САПР, актуализируемые конечным пользователем.

1.4 . ПМК «Ядро САПР» должно включать следующие функционально-связанные компоненты: ПМК управления процессом проектирования, управления информационной моделью проекта и ПМК «Базовые процессоры».

1.5 . Совместимость компонентов между собой, а также программных средств, составляющих в целом ПМК «Ядро САПР», осуществляется на двух уровнях: на уровне компонент - путем использования единой информационной модели проектируемого объекта и на уровне программных средств - на основе международных стандартов на представление графических и геометрических данных, а также сетевых стандартов на протоколы и интерфейсы между ними.

2 . ТРЕБОВАНИЯ К ПМК УПРАВЛЕНИЯ ПРОЦЕССОМ ПРОЕКТИРОВАНИЯ

2.1 . ПМК управления процессом проектирования предназначен для обеспечения качественной сборки вычислительных процессов в одно целое и управления их функционированием автоматически по исходному заданию либо на базе диалогового взаимодействия с пользователем.

2.2 . Рассматриваемый ПМК должен осуществлять:

настройку на тезаурус конечного пользователя;

генерирование диалоговых программ на основе формализованного описания сценария диалога;

трансляцию вводимых пользователем заданий на проектирование;

выдачу информации о результатах выполненных заданий, состоянии объекта или процесса проектирования;

корректировку сценария проектирования по его результатам;

подключение проектирующих и обслуживающих средств к комплексу средств автоматизированного проектирования.

3 . ТРЕБОВАНИЯ К ПМК УПРАВЛЕНИЯ ИНФОРМАЦИОННОЙ МОДЕЛЬЮ ПРОЕКТА

3.1 . ПМК управления информационной моделью проекта предназначен для организации, хранения и манипулирования проектными данными в процессе автоматизированного проектирования.

3.2 . Настоящий ПМК создается по принципам построения систем управления базами данных (СУБД).

3.3 . ПМК призван обеспечивать:

выполнение операций по формированию структуры проектных данных по требованиям пользователя;

манипулирование проектными данными и связями между ними;

выдачу справочной информации о состоянии структуры проектных данных;

физическую организацию проектных данных;

мультидоступ к проектным данным;

восстановление целостности проектных данных при сбоях системы;

обмен проектными данными с внешними базами данных;

ввод информации об объекте проектирования (ОП) на формальном языке, ее контроль и редактирование;

независимость средств СУБД от прикладных ПМК.

4 . ТРЕБОВАНИЯ К ПМК «БАЗОВЫЕ ПРОЦЕССОРЫ»

4.1 . ПМК «Базовые процессоры» предназначен для выполнения процедур обслуживания проектирования.

4.2 . Начальный состав ПМК «Базовые процессоры» ядра САПР включает следующие базовые процессоры: геометрического моделирования, визуализации результатов проектирования; документирования проектных решений.

4.2.1 . Базовый процессор геометрического моделирования призван обеспечивать:

формирование геометрической модели ОП;

преобразование геометрической информации в другие структуры проектных данных;

выполнение геометрических расчетов по вычислению инерционно-массовых, объемных и проекционных характеристик ОП;

подготовку данных для выполнения прочностных, теплофизических и других общетехнических расчетов;

связь с графической базой данных.

4.2.2 . Базовый процессор визуализации результатов проектирования обеспечивает:

отображение затребованной информации об ОП на устройствах графического вывода;

ввод и редактирование графической информации с одновременным внесением изменений в геометрическую модель ОП;

оперативное отслеживание изменений в геометрической модели ОП при визуализации результатов проектирования.

4.2.3 . Базовый процессор документирования проектных решений обеспечивает:

формирование информационных моделей рабочих чертежей проектируемых объектов;

создание информационных моделей спецификаций проектируемых объектов;

выдачу документации о проектных решениях в соответствии с требованиями ЕСКД.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАНЫ И ВНЕСЕНЫ Институтом технической кибернетики Академии Наук БССР.

ИСПОЛНИТЕЛИ: В.П. Васильев (руководитель темы), В.И. Богданович, А.К. Куличенко, О.И. Семенков, Л.Г. Милькаян.

Сегодня представить современное производство без каких-либо средств автоматизации очень сложно. Каждое мелкое или крупное предприятие так или иначе сталкивается с системами автоматизированного проектирования. И в частности с CAD системами.
Как правило, основой САПР является графический редактор, при помощи которого создаются и редактируются электронные макеты, состоящие из примитивов (точек, отрезков, дуг и тд). Примитивы могут быть объединены в блоки и многократно использованы при создании других электронных макетов, что колоссально повышает производительность труда инженера-проектировщика. Современные программы позволяют создавать и редактировать пространственные модели объектов практически неограниченной сложности.
Фундаментальный компонент в архитектуре системы трехмерного моделирования – геометрическое ядро. Геометрическое (математическое) ядро - это набор функций, выполнение которых обеспечивает построение трехмерных моделей. Ядро не самоценно, оно создается для использования в прикладных программах. Доступ к функциям ядра конечному пользователю открывает CAD-система (как правило, через графический пользовательский интерфейс). Кроме того, ядро иногда называют «движком» системы геометрического моделирования. Подобно тому, как двигатель автомобиля определяет «потолок» его скорости, математическое ядро определяет предел функциональных возможностей использующей его САПР.
Основные функции ядра:
- представление геометрических данных в контексте системы;
- реализация хранения данных в нейтральных форматах для обеспечения интеграции с существующими системами, необходимой для возможности широкого распространения продукта;
- реализация типичных операций представления, таких как масштабирование, поворот и перемещение поверхностей;
- реализация простейших операций редактирования тел и поверхностей;
- интерактивное взаимодействие с компонентами математической модели проектируемого изделия и получения сведений о размерах и положении частей математической модели.

Схематически ядро можно представить, как показано на рис 1.

Рис 1. Структура ядра

Структура данных и топология

Топология определяет отношения между простыми геометрическими объектами, которые могут быть связаны между собой и представлять единый сложный геометрический объект. Структуры данных, используемые для описания объемных тел, обычно делятся на три типа в зависимости от того, какие тела ими описываются.

Первая структура представляет собой дерево, описывающее историю применения булевских операций к примитивам. Журнал операций носит название конструктивное представление объемной геометрии (CSG). А само дерево называется деревом CSG


Рис 2. Дерево CSG

Дерево CSG обладает следующими преимуществами :
· структура данных проста, а их представление компактно, что облег-чает обработку;
· объемное тело, описываемое деревом CSG, всегда является коррект-ным, то есть его внутренний объем однозначно отделен от внешнего. Примером некорректного объемного тела является тело с лишним ребром. Для него деление объема на внутренний и внешний вблизи вершины, к которой подходит это ребро, оказывается неоднознач-ным;
· представление CSG всегда может быть преобразовано к соответст-вующему представлению B-Rep. Это позволяет взаимодействовать с программами, ориентированными на использование B-Rep;
· параметрическое моделирование легко реализуется изменением па-раметров соответствующих примитивов
Недостатки :
· поскольку дерево CSG хранит историю применения булевских опе-раций, в процессе моделирования могут использоваться только они. Это требование жестко ограничивает диапазон моделируемых объек-тов. Более того, оно исключает использование удобных функций ло-кального изменения, таких как поднятие и скругление;
· для получения сведений о граничных поверхностях, их ребрах и свя-зях между этими элементами из дерева CSG требуется сложные вы-числения. К сожалению, сведения о границах нужны для множества приложений, в частности для отображения тел. Для того, чтобы ото-бразить затушеванное изображение или чертеж объемного тела, нужно иметь информацию о гранях или вершинах этого тела. Поэто-му представление CSG является недостаточным для интерактивного отображения тел и манипулирования ими. Другой пример – расчет траектории движения фрезы с ЧПУ для обработки поверхностей те-ла. Для этой задачи нужны сведения о поверхностях, их ребрах и связности. Получить все эти данные из дерева CSG очень непросто.

Из-за этих недостатков разработчики программ, основанных на представ-лении CSG, стараются добавить соответствующие сведения о границах. Такое комбинированное математическое представление называется гибридным и тре-бует поддержания согласованности между структурами данных.

Вторая структура содержит сведения о границах объема (вершинах, реб-рах, гранях) и их соединении друг с другом. Это представление называется гра-ничным представлением (boundary representation - B-rep). Многие структуры B-rep строятся по-разному в зависимости от того, какой элемент считается основ-ным при сохранении сведений о связности.
Допустим, есть тело, представленное на рис. 3.

Рис 3 Дерево CSG

В структуре B-Rep это тело будет выглядеть, как показано в табл. 1.

Табл 1. Представление тела в структуре B-Rep

В каждой строке таблицы ребер хранятся вершины, находящиеся на кон-цах соответствующего ребра, а в строках таблицы вершин хранятся координаты всех вершин. Эти координаты обычно определяются в модельной системе ко-ординат, связанной с данным телом. Если убрать отсюда таблицу граней, эту структуру данных можно будет использовать для хранения форм, созданных в системах каркасного моделирования. Структура данных для каркасной модели может использоваться в качестве базовой для систем автоматизированной раз-работки чертежей, если допустить указание двумерных координат для точек.
Структура данных B-Rep выглядит очень простой и компактной. Однако она не используется в развитых системах твердотельного моделирования из-за перечисленных ниже недостатков.
· Структура данных B-Rep ориентирована на хранение плоских много-гранников. Если потребуется сохранить данные о теле с криволиней-ными гранями и ребрами, то строки таблиц граней и ребер придется изменять таким образом, чтобы в них можно было включить уравне-ния поверхности и кривой соответственно (уравнения поверхностей и кривых, а также координаты вершин называют геометрическими данными, тогда как отношения между гранями, ребрами и вершина-ми называют топологическими данными. Данные в любой структуре B-Rep могут быть классифицированы либо как геометрические, либо как топологические). Уравнения для плоских граней сохранять не обязательно, поскольку плоские грани определяются находящимися на них вершинами.
· Грань с внутренними и внешними границами (рис. 4 а) не может быть сохранена в таблице граней, поскольку для нее нужно два списка ребер вместо одного. Такие грани появляются, например, при моделирова-нии объемных тел со сквозными отверстиями. Простым решением этой проблемы является добавление ребра, соединяющего внешнюю и внутреннюю границы (рис. 4 б). В этом случае два списка вершин мо-гут быть объединены. Соединительное ребро называется мостиком или перемычкой (bridge edge) и попадает в список ребер в двух экземплярах.


Рис. 4. Поверхность с двумя границами и метод их обхода
· Количество ребер у разных граней может быть различно (см. табл.1). Более того, невозможно определить заранее количество столбцов (по одному на каждое ребро), которые потребуются для конкретной грани, поскольку это количество может меняться в процессе моделирования. Следовательно, количество столбцов должно сохраняться в виде пере-менной в момент объявления таблицы граней. Работа с таблицей пере-менного размера создает некоторые неудобства.
· Получать сведения о связности непосредственно из данных, сохранен-ных в трех таблицах, может быть довольно утомительно. Представьте себе поиск двух граней с общим ребром в случае граничного представ-ления тела в трех таблицах. Придется просмотреть всю таблицу граней, чтобы найти строки, в которых присутствует нужное ребро. Если нужно найти все ребра, соединяющиеся в конкретной вершине, опять-таки придется просматривать всю таблицу ребер. Легко видеть, что при больших размерах таблиц поиск в них становится крайне неэффективным.

Есть две распространенные структуры данных, которые позволяют избе-жать перечисленные проблемы при сохранении граничного представления объ-емного тела. Это структура полуребер (список граней, каждой из которых со-ответствует двусвязный список ребер, главная роль отводится граням) и структура крыльевых ребер (главная роль отводится ребрам, для каждого реб-ра сохраняется список граней, которым оно принадлежит, ребер, с которыми оно имеет общие вершины, и вершин на его концах).

Третья структура представляет объем в виде комбинации элементарных объемов (например, кубов) – декомпозиционная модель (воксельное представ-ление, октантное дерево – совокупность шестигранников, ячеечное представле-ние).


Рис. 5. Декомпозиционная модель

Математический аппарат

Математический решает ряд задач. Это непосредственное представление кривых и поверхностей, пересчет координат при изменении параметров (это выполняет т.н. параметризатор), а также решение систем уравнений для нахождения пересечения поверхностей и кривых.
Для каждого криволинейного ребра в компьютере хранится либо уравнение кривой, либо эквивалентные характеристические параметры (центр, радиус, вектор нормали к плоскости, в которой лежит окружность, - примеры характеристических параметров, эквивалентных уравнению окружности).
Уравнения кривых можно разделить на два основных типа . К первому типу относятся параметрические уравнения, описывающие связь координат x, y и z точки кривой с параметром. Ко второму типу относят непараметрические уравнения, связывающие x, y и z некоторой функцией.
В САПР чаще всего используются параметрические уравнения кривых и поверхностей. В некоторых случаях точки пересечения кривых удобно искать, если одна из кривых задана в параметрической форме, а другая – в непараметрической. Поэтому в отдельных системах используется преобразование уравнений из параметрической формы в непараметрическую и обратно.
Чаще всего для описания кривых, используемых в программах CAD, используются уравнения третьего порядка, потому что они обладают важным свойством: две кривые, описываемые такими уравнениями, могут быть соединены таким образом, что вторые производные в точке соединения будут равны друг другу. Это означает, что кривизна в точке соединения остается постоянной, отчего кривые кажутся одним целым. Ту же непрерывность можно получить и для кривых более высоких порядков, однако работа с ними требует интенсивных вычислений.
Уравнения поверхностей, как и уравнения кривых делятся на два основных типа: параметрические, связывающие значения x, y и z со значениями параметра (самые распространенные), и непараметрические, связывающие координаты x, y и z непосредственно друг с другом какой-либо функцией.
Расчет точек пересечения кривых необходим для определения границ ксегментов при применении булевских операций. Ксегмент - часть кривой, по которой пересекаются две грани, относящиеся к разным объемным телам. Ксегмент принадлежит обеим граням. Границы ксегмента получаются путем вычисления точек пересечения кривой, ограничивающей пересекающие поверхности, с кривой, по которой пересекаются эти поверхности (относящиеся к разным телам). После получения границ ксегмента нужно сделать еще один шаг, чтобы разделить кривую пересечения в точках пересечения.

Модуль визуализации

Раньше почти все приложения работы с графикой имели свой внутренний графический движок. Сейчас же появились специализированные графические библиотеки.
Конкретное приложение может обращаться напрямую через аппаратно-зависимый драйвер устройства или через графическую библиотеку.
1) Приложение -> драйвер -> Устройство ввода/вывода.
2) Приложение -> Графическая библиотека -> Драйвер -> Устройство ввода/вывода
Недостаток первого подхода – требуется поддержка большого количества видеокарт.
Графическая библиотека представляет собой набор подпрограмм, предназначенных для решения определенных задач. Она основывается на командах драйвера устройства. В современных САПР для визуализации используется библиотека OpenGL.

Набор интерфейсов API

API (Application Program Interface) – интерфейс прикладной программы. Набор таких интерфейсов должен обеспечить взаимосвязь между внешними модулями прикладной программы и низкоуровневыми функциями ядра, а так же между компонентами ядра – различными библиотеками.

Вместо заключения
Разработка ядра является очень наукоемкой и сложной задачей. Для её реализации требуется привлечение большого числа высококвалифицированных специалистов и, в первую очередь, математиков. Разработка и отладка функции ядра может занять очень длительный срок, что не всегда приемлемо для многих компаний.

Литература

1. Ли К. Основы САПР (CAD/CAM/CAE). – СПб.: Питер, 2004. – 560 с.

09.09.2015, Ср, 16:02, Мск , Текст: Владислав Мещеряков

«Дочка» компании «Аскон» C3D Labs сообщила о продаже лицензии на свое геометрическое ядро C3D южнокорейской SolidEng. В C3D Labs говорят о своем продукте как об одном из пяти самых распространенных коммерческих ядер на рынке.

Продажа ядра корейцам

Отечественный разработчик систем автоматизированного проектирования компания «Аскон» продал права на использование своего геометрического ядра C3D южнокорейской компании SolidEng.

Геометрическое ядро - это совокупность программных средств (библиотек), на основе которых строятся средства проектирования, управления станками с ЧПУ и различного инженерного ПО.

В частности, на ядре C3D базируются несколько продуктов самого «Аскона»: система трехмерного моделирования «Компас-3D», модули «Компас-График», «Компас-Строитель» и др.

Покупатель асконовского ядра компания SolidEng - говорит о себе как о ведущей южнокорейской консалтинговой компании и системном интеграторе, занятом трехмерным проектированием (3D PLM) в автомобильной, аэрокосмической, судостроительной отраслях.

Кроме того, SolidEng разрабатывает собственные программные решения для различных производств, а также мобильные игры.

Узел, разработанный системой на основе ядра C3D

Секретные условия продажи

Для каких работ SolidEng планирует использовать приобретенное у «Аскона» ядро C3D, корейцы не сообщают. Известно, что соглашение между компаниями не ограничивает число лицензий на ядро в пределах единого центра разработки (таким образом над проектом с применением ядра C3D смогут трудиться неограниченное число разработчиков).

Сумма сделки не раскрывается. Представители «Аскона» говорят, что это - обычная практика для сделок по лицензированию геометрических ядер, которые, как правило, всякий раз заключаются на отдельно оговариваемых условиях.

По информации с официального сайта «Аскон», лицензия на ядро C3D подразумевает ежегодную оплату. При выпуске заказчиком коммерческих продуктов или услуг на базе C3D, он должен ежеквартально перечислять роялти «Аскону». Величина роялти не зависит от стоимости продукта - она фиксированная. В качестве опции «Аскон» предлагает расширенную техподдержку и сопровождение с годовой оплатой.

Вторая похожая сделка

Интересно, что лицензирование ядра SolidEng - не первая подобная сделка, заключенная с южнокорейской компанией: до этого пользователем и дистрибьютором ядра стала компания Solar Tech.

Кроме того, весной 2015 г. о продаже лицензии ядра C3D шведской компании Elecosoft Consultec. Это была первая сделка такого рода в Западной Европе у «Аскона».

Как уточняют в «Асконе», сейчас у компании имеются 17 клиентов-покупателей ядра, среди которых есть РФЯЦ-ВНИИЭФ, частные компании и университеты из России («НТП Трубопровод», «НИП-Информатика», Центр «ГеоС», «Базис-центр», Мордовский государственный университет) и Украины.

C3D как популярный продукт

Непосредственный разработчик ядра - компания C3D Labs, «дочка» «Аскона» и резидент «Сколково».

Представитель C3D Labs Аркадий Камнев причисляет C3D к числу пяти самых известных геометрических ядер, доступных для коммерческого лицензирования. Остальные четыре это Parasolid (разрабатывается Siemens PLM Software), ACIS (Spatial, Dassault Systemes), CGM (Dassault Systemes), а также ядро с открытым кодом Open CASCADE, в создании которого принимает участие центр разработки в Нижнем Новгороде.

Поделитесь с друзьями или сохраните для себя:

Загрузка...