Электрический ток в вакууме. Электронная эмиссия

Перед тем, как говорить, по какому механизму распространяется электрический ток в вакууме, необходимо понять, что же это за среда.

Определение. Вакуум – состояние газа, при котором свободный пробег частицы больше размера сосуда. То есть такое состояние, при котором молекула или атом газа пролетает от одной стенки сосуда к другой, не сталкиваясь с другими молекулами или атомами. Существует также понятие глубины вакуума, которое характеризует то малое количество частиц, которое всегда остается в вакууме.

Для существования электрического тока необходимо наличие свободных носителей заряда. Откуда они берутся в области пространства с очень малым содержанием вещества? Для ответа на этот вопрос необходимо рассмотреть опыт, проведенный американским физиком Томасом Эдисоном (рис. 1). В ходе эксперимента две пластины помещались в вакуумную камеру и замыкались за ее пределами в цепь с включенным электрометром. После того как одну пластину нагревали, электрометр показывал отклонение от нуля (рис. 2).

Результат опыта объясняется следующим образом: в результате нагревания металл из своей атомной структуры начинает испускать электроны, по аналогии испускания молекул воды при испарении. Разогретый металл окружает электронное озеро. Такое явление называется термоэлектронной эмиссией.

Рис. 2. Схема опыта Эдисона

В технике очень важное значение имеет использование так называемых электронных пучков.

Определение. Электронный пучок – поток электронов, длина которого много больше его ширины. Получить его довольно просто. Достаточно взять вакуумную трубку, по которой проходит ток, и проделать в аноде, к которому и идут разогнанные электроны, отверстие (так называемая электронная пушка) (рис. 3).

Рис. 3. Электронная пушка

Электронные пучки обладают рядом ключевых свойств:

В результате наличия большой кинетической энергии они имеют тепловое воздействие на материал, в который врезаются. Данное свойство применяется в электронной сварке. Электронная сварка необходима в тех случаях, когда важно сохранение чистоты материалов, например, при сваривании полупроводников.

При столкновении с металлами электронные пучки, замедляясь, излучают рентгеновское излучение, применяемое в медицине и технике (рис. 4).

Рис. 4. Снимок, сделанный при помощи рентгеновского излучения ()

При попадании электронного пучка на некоторые вещества, называющиеся люминофорами, происходит свечение, что позволяет создавать экраны, помогающие следить за перемещением пучка, конечно же, невидимого невооруженным глазом.

Возможность управлять движением пучков с помощью электрических и магнитных полей.

Следует отметить, что температура, при которой можно добиться термоэлектронной эмиссии, не может превышать той температуры, при которой идет разрушение структуры металла.

На первых порах Эдисон использовал следующую конструкцию для получения тока в вакууме. В вакуумную трубку с одной стороны помещался проводник, включенный в цепь, а с другой стороны – положительно заряженный электрод (см. рис. 5):

В результате прохождения тока по проводнику он начинает нагреваться, эмиссируя электроны, которые притягиваются к положительному электроду. В конце концов, возникает направленное движение электронов, что, собственно, и является электрическим током. Однако количество таким образом испускаемых электронов слишком мало, что дает слишком малый ток для какого-либо использования. С этой проблемой можно справиться добавлением еще одного электрода. Такой электрод отрицательного потенциала называется электродом косвенного накаливания. С его использованием количество движущихся электронов в разы увеличивается (рис. 6).

Рис. 6. Использование электрода косвенного накаливания

Стоит отметить, что проводимость тока в вакууме такая же, как и у металлов – электронная. Хотя механизм появления этих свободных электронов совсем иной.

На основе явления термоэлектронной эмиссии был создан прибор под названием вакуумный диод (рис. 7).

Рис. 7. Обозначение вакуумного диода на электрической схеме

Рассмотрим подробнее вакуумный диод. Существует две разновидности диодов: диод с нитью накаливания и анодом и диод с нитью накаливания, анодом и катодом. Первый называется диодом прямого накала, второй – косвенного накала. В технике применяется как первый, так и второй тип, однако диод прямого накала имеет такой недостаток, что при нагревании сопротивлении нити меняется, что влечет за собой изменение тока через диод. А так как для некоторых операций с использованием диодов необходим совершенно неизменный ток, то целесообразнее использовать второй тип диодов.

В обоих случаях температура нити накаливания для эффективной эмиссии должна равняться .

Диоды используются для выпрямления переменных токов. Если диод используется для преобразования токов промышленного значения, то он называется кенотроном.

Электрод, расположенный вблизи испускающего электроны элемента, называется катодом (), другой – анодом (). При правильном подключении при увеличении напряжения растет сила тока. При обратном же подключении ток идти не будет вообще (рис. 8). Этим вакуумные диоды выгодно отличаются от полупроводниковых, в которых при обратном включении ток хоть и минимальный, но есть. Благодаря этому свойству вакуумные диоды используются для выпрямления переменных токов.

Рис. 8. Вольтамперная характеристика вакуумного диода

Другим прибором, созданным на основе процессов протекания тока в вакууме, является электрический триод (рис. 9). Его конструкция отличается от диодной наличием третьего электрода, называемого сеткой. На принципах тока в вакууме основан также такой прибор, как электронно-лучевая трубка, составляющий основную часть таких приборов, как осциллограф и ламповые телевизоры.

Рис. 9. Схема вакуумного триода

Как уже было сказано выше, на основе свойств распространения тока в вакууме было сконструировано такое важное устройство, как электронно-лучевая трубка. В основе своей работы она использует свойства электронных пучков. Рассмотрим строение этого прибора. Электронно-лучевая трубка состоит из вакуумной колбы, имеющей расширение, электронной пушки, двух катодов и двух взаимно перпендикулярных пар электродов (рис. 10).

Рис. 10. Строение электронно-лучевой трубки

Принцип работы следующий: вылетевшие вследствие термоэлектронной эмиссии из пушки электроны разгоняются благодаря положительному потенциалу на анодах. Затем, подавая желаемое напряжение на пары управляющих электродов, мы можем отклонять электронный пучок, как нам хочется, по горизонтали и по вертикали. После чего направленный пучок падает на люминофорный экран, что позволяет нам видеть на нем изображение траектории пучка.

Электронно-лучевая трубка используется в приборе под названием осциллограф (рис. 11), предназначенном для исследования электрических сигналов, и в кинескопических телевизорах за тем лишь исключением, что там электронные пучки управляются магнитными полями.

На следующем уроке мы разберем прохождение электрического тока в жидкостях.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) – М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. – М.: Илекса, 2005.
  3. Мякишев Г.Я., Синяков А.З., Слободсков Б.А. Физика. Электродинамика. – М.: 2010.
  1. Physics.kgsu.ru ().
  2. Cathedral.narod.ru ().
  3. Энциклопедия Физики и Техники ().

Домашнее задание

  1. Что такое электронная эмиссия?
  2. Какие есть способы управления электронными пучками?
  3. Как зависит проводимость полупроводника от температуры?
  4. Для чего используется электрод косвенного накала?
  5. *В чем основное свойство вакуумного диода? Чем оно обусловлено?

Урок № 40-169 Электрический ток в газах. Электрический ток в вакууме.

В обычных условиях газ - это диэлектрик (R), т.е. состоит из нейтральных атомов и молекул и не содержит свободных носителей электрического тока. Газ-проводник - это ионизированный газ, он обладает электронно-ионной проводимостью.

Воздух- диэлектрик

Ионизация газа - это распад нейтральных атомов или молекул на положительные ионы и электроны под действием ионизатора (ультрафиолетовое, рентгеновское и радиоактивное излучения; нагрев) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях. Газовый разряд – прохождение электрического тока через газ. Газовый разряд наблюдается в газоразрядных трубках (лампах) при воздействии электрического или магнитного поля.

Рекомбинация заряженных частиц

Газ перестает быть проводником, если ионизация прекращается, это происходит вследствие рекомбинации (воссоединения противоположно заряженных частиц). Виды газовых разрядов: самостоятельный и несамостоятельный.
Несамостоятельный газовый разряд - это разряд, существующий только под действием внешних ионизаторов Газ в трубке ионизирован, на электроды подается напряже­ние (U) и в трубке возникает электрический ток(I). При увеличении U возрастает сила тока I Когда все заряженные частицы, образующиеся за секунду, достигают за это время электро­дов (при некотором напряжении (U*), ток достигает насыщения (I н). Если действие иони­затора прекращается, то прекращается и разряд (I= 0).Самостоятельный газовый разряд - разряд в газе, сохраняющийся после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации электрического удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина). При некотором значении напряжения (U пробоя) сила тока снова возрастает. Ионизатор уже не нужен для поддер­жания разряда. Происходит ионизация электронным ударом . Несамостоятельный газовый разряд может переходить в самостоятельный газовый разряд при U а = U зажигания.Электрический пробой газа - переход несамостоятельного газового разряда в самостоятельный. Типы самостоятельного газового разряда: 1. тлеющий - при низких давлениях (до нескольких мм рт.ст.) - наблюдается в газосветных трубках и газовых лазерах. (лампы дневного света) 2. искровой - при нормальном давлении (P = P атм )и высокой напряженности электрического поля Е (молния - сила тока до сотен тысяч ампер). 3. коронный - при нормальном давлении в неоднородном электрическом поле (на острие, огни святого Эльма).

4. дуговой - возникает между близко сдвинутыми электродами - большая плотность тока, малое напряжение между электродами, (в прожекторах, проекционной киноаппаратуре, сварка, ртутные лампы)

Плазма - это четвертое агрегатное состояние вещества с высокой степенью ионизации за счет столкновения молекул на большой скорости при высокой температуре; встречается в природе: ионосфера – слабо ионизированная плазма, Солнце - полностью ионизированная плазма; искусственная плазма – в газоразрядных лампах. Плазма бывает: 1. - низкотемпературная Т 10 5 К. Основные свойства плазмы: - высокая электропроводность; - сильное взаимодействие с внешними электрическими и магнитными полями. При Т = 20∙ 10 3 ÷ 30∙ 10 3 К любое вещество - плазма. 99% вещества во Вселенной - плазма.

Электрический ток в вакууме.

Вакуум – сильно разреженный газ, соударений молекул практически нет, длина свободного пробега частиц (расстояние между столкновениями) больше размеров сосуда (Р « Р~10 -13 мм рт. ст.). Для вакуума характерна электронная проводимость (ток – движение электронов), сопротивление практически отсутствует (R
). В вакууме: - электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность; - создать электрический ток в вакууме можно, если использовать источник заряженных частиц; - действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии. Термоэлектронная эмиссия - явление вылета свободных электронов с поверхности нагретых тел, испускание электронов твердыми или жидкими телами происходит при их нагревании до температур, соответствующих видимому свечению раскаленного металла. Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако. В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно). Чем выше температура металла, тем выше плотность электронного облака. Электрический ток в вакууме возможен в электронных лампах. Электронная лампа - устройство, в котором применяется явление термоэлектронной эмиссии.


Вакуумный диод.

Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа. Внутри стеклянного баллона создается очень низкое давление (10 -6 ÷10 -7 мм рт. ст.), Нить накала, помещена внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с “+” источника тока, а катод с “–”, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая электрический ток в вакууме.

ВАХ (вольтамперная характеристика) вакуумного диода.

Ток на входе диодного выпрямителя При малых напряжениях на аноде не все электроны, испускаемые катодом, достигают анода, и ток небольшой. При больших напряжениях ток достигает насыщения, т.е. максимального значения. Вакуумный диод обладает односторонней проводимостью и используется для выпрямления переменного тока.

Электронные пучки - это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах. Свойства электронных пучков: - отклоняются в электрических полях; - отклоняются в магнитных полях под действием силы Лоренца; - при торможении пучка, попадающего на вещество, возникает рентгеновское излучение; - вызывает свечение (люминесценцию) некоторых твердых и жидких тел (люминофоров); - нагревают вещество, попадая на него.

Электронно - лучевая трубка (ЭЛТ)

- используются явления термоэлектронной эмиссии и свойства электронных пучков. Состав ЭЛТ: электронная пушка, горизонтальные и вертикальные отклоняющие пластины-электродов и экран. В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок: 1. с электростатическим управлением электронного пучка (отклонение электронного пучка только электрическим полем) 2. с электромагнитным управлением (добавляются магнитные отклоняющие катушки). Основное применение ЭЛТ: кинескопы в телеаппаратуре; дисплеи ЭВМ; электронные осциллографы в измерительной технике. Экзаменационный вопрос 47. В каком из перечисленных ниже случаев наблюдается явление термоэлектронной эмиссии? А. Ионизация атомов под действием света. Б. Ионизация атомов в результате столкнов ений при высокой температуре. В. Испускание электронов с поверхности нагретого катода в телевизионной трубке. Г. При прохождении электрического тока через раствор электролита.

До того, как в радиотехнике стали использовать полупроводниковые приборы, везде использовались электронные лампы.

Понятие вакуума

Электронная лампа представляла собой запаянный с обоих концов стеклянный тубус, в одном стороне которого располагался катод, а в другом анод. Из тубуса отчаливали газ до такого состояния, при котором молекулы газа могли пролететь от одной стенки до другой и при этом не столкнуться. Такое состояние газа называется вакуум . Другими словами вакуум - это сильноразреженный газ.

В таких условиях проводимость внутри лампы можно обеспечить только путем введения внутрь источника заряженных частиц. Для того, чтобы внутри лампы появились заряженные частицы пользовались таким свойством тел, как термоэлектронная эмиссия.

Термоэлектронная эмиссия – это явление испускания телом электронов, под действием высокой температуры. У очень многих веществ термоэлектронная эмиссия начинается при температурах, при которых еще не может начаться испарение самого вещества. В лампах из таких веществ делали катоды.

Электрический ток в вакууме

Катод потом нагревали, вследствие чего он начинал постоянно испускать электроны. Эти электроны образовывали вокруг катода электронное облако. При подключении к электродам источника питания, между ними образовывалось электрическое поле.

При этом, если положительный полюс источника соединить с анодом, а отрицательный с катодом, то вектор напряженности электрического поля будет направлен в сторону катода. Под действием этой силы, некоторые электроны вырываются из электронного облака и начинают двигаться к аноду. Тем самым они создают электрический ток внутри лампы.

Если же подключить лампу иначе, положительный полюс соединить с катодом, а отрицательный с анодом, то напряженность электрического поля будет направлена от катода к аноду. Это электрическое поле будет отталкивать электроны назад к катоду, и проводимости не будет. Цепь останется разомкнутой. Это свойство получило название односторонней проводимости .

Вакуумный диод

Раньше односторонняя проводимость широко использовалась в электронных приборах с двумя электродами. Такие приборы назывались вакуумными диодами . Они выполняли в свое время роль, которую выполняют сейчас полупроводниковые диоды.

Чаще всего использовались для выпрямления электрического тока. В данный момент вакуумные диоды практически нигде не применяются. Вместо них все прогрессивное человечество использует полупроводниковые диоды.

Это краткий пересказ.

Работа над полной версией продолжается


Лекция 20

Ток в вакууме

1. Замечание о вакууме

Электрического тока в вакууме нет, т.к. в термодинамическом вакууме отсутствуют какие-либо частицы.

Однако наилучший достигнутый практически вакуум составляет

,

т.е. огромное количество частиц.

Тем не менее, когда говорят о токе в вакууме, подразумевают идеальный в термодинамическом смысле вакуум, т.е. полное отсутствие частиц. За протекание тока отвечают частицы, полученные из какого-либо источника.

2. Работа выхода

Как известно, в металлах существует электронный газ, который удерживается силой притяжения к кристаллической решетке. В нормальных условиях энергия электронов не велика, поэтому они удерживаются внутри кристалла.

Если подходить к электронному газу с классических позиций, т.е. считать, что он подчиняется распределению Максвелла-Больцмана, то очевидно, что существует большая доля частиц, скорости которых выше средних. Следовательно, эти частицы обладают достаточной энергией, чтобы вырваться за пределы кристалла и образовать вблизи него электронное облако.

Поверхность металла при этом заряжается положительно. Образуется двойной слой, который препятствует удалению электронов от поверхности. Следовательно, чтобы удалить электрон, необходимо сообщить ему дополнительную энергию.

Определение: Работой выхода электронов из металла называется энергия, которую необходимо сообщить электрону, чтобы удалить его с поверхности металла в бесконечность в состоянии с нулевой E k .

Для разных металлов работа выхода различна.



Металл

Работа выхода, эВ

1,81

3. Электронная эмиссия.

В обычных условиях энергия электронов достаточно мала и они связаны внутри проводника. Существуют способы сообщения электронам дополнительной энергии. Явление испускания электронов при внешнем воздействии называется электронной эмиссией, и было открыто Эдисоном в 1887 году. В зависимости от способа сообщения энергии различают 4 вида эмиссии:

1. Термоэлектронная эмиссия (ТЭЭ), способ – подвод тепла (нагрев).

2. Фотоэлектронная эмиссия (ФЭЭ), способ – освещение.

3. Вторичная электронная эмиссия (ВЭЭ), способ – бомбардировка частицами.

4. Автоэлектронная эмиссия (АЭЭ), способ – сильное электрическое поле.

4. Автоэлектронная эмиссия

Под действием сильного электрического поля электроны могут вырываться с поверхности металла.

Данной величины напряженности хватает, чтобы вырвать электрон.

Данное явление называется холодной эмиссией. Если поле достаточно сильное, то число электронов может стать большим, а, следовательно, большим ток. По закону Джоуля – Ленца будет выделяться большое количество теплоты и АЭЭ может перейти в ТЭЭ.

5. Фотоэлектронная эмиссия (ФЭЭ)

Явление фотоэффекта известно достаточно давно, смотри «Оптика».

6. Вторичная электронная эмиссия (ВЭЭ)

Это явление применяется в фотоэлектронных умножениях (ФЭУ).

При работе происходит лавинообразное нарастание числа электронов. Применяется для регистрации слабых световых сигналов.

7. Вакуумный диод.

Для изучения ТЭЭ применяют устройство, которое называется вакуумный диод. Чаще всего конструктивно он представляет собой два коаксиальных цилиндра, помещенных в стеклянную вакуумную колбу.

Нагрев катода осуществляется электрическим током прямым или косвенным способом. При прямом – ток проходит через сам катод, при косвенном – внутри катода помещают дополнительный проводник – нить накала. Разогрев происходит до достаточно высоких температур, поэтому катод делают сложным. Основа – тугоплавкий материал (вольфрам), а покрытие – материал с малой работой выхода (цезий).

Диод относится к нелинейным элементам, т.е. он не подчиняется закону Ома. Говорят, что диод – это элемент с односторонней проводимостью. Большая часть ВАХ диода описывается законом Богуславского – Ленгмюра или законом «3/2»

При повышении температуры накала ВАХ сдвигается вверх и ток насыщения растет. Зависимость плотности тока насыщения от температуры описывается законом Ричардсона – Дешмана

Методами квантовой статистики можно получить эту формулу с const = B одинаковой для всех металлов. Эксперимент показывает, что константы различны.

8. Однополупериодный выпрямитель


9. Двухполупериодный выпрямитель (самостоятельно).

10. Применение ламп.

К достоинствам ламп относят

· лёгкость управления потоком электронов,

· большая мощность,

· большой участок почти линейной ВАХ.

· Лампы используют в мощных усилителях.

К недостаткам относятся:

· низкий КПД,

· высокое потребление энергии.


Электрический ток в вакууме может проходить при условии, что в него будут помещены свободные носители заряда. Ведь вакуум это отсутствие, какого либо вещества. А значит, нет никаких носителей зарядов, чтобы обеспечить ток. Понятие вакуум можно определить так, когда длинна свободного пробега молекулы больше размеров сосуда.

Для того чтобы выяснить каким же образом можно обеспечить прохождение тока в вакууме проведем опыт. Для него нам понадобится электрометр и вакуумная лампа. То есть стеклянная колба с вакуумом, в которой находятся два электрода. Один, из которых выполнен в виде металлической пластины назовем его анод. А второй в виде проволочной спирали из тугоплавкого материала назовём его катод.

Подсоединим электроды лампы к электрометру таким образом, чтобы катод был подключён к корпусу электрометра, а анод к стержню. Сообщим заряд электрометру. Поместив положительный заряд на его стержень. Мы увидим, что заряд сохранится на электрометре, несмотря на наличие лампы. Это и не удивительно ведь между электродами в лампе нет носителей зарядов, то есть не может возникнуть ток, чтобы электрометр разрядился.

Рисунок 1 — вакуумная лампа, подключённая к заряженному электрометру

Теперь подключим к катоду в виде проволочной спирали источник тока. При этом катод разогреется. И мы увидим, что заряд электрометра начнет уменьшаться, пока совсем не исчезнет. Как же это могло произойти ведь в зазоре между электродами лампы небыли носителей заряда, чтобы обеспечить ток проводимости.

Очевидно, что носители заряда каким-то образом появились. А произошло это, потому что при нагревании катода в пространство между электродами эмитировались электроны с поверхности катода. Как известно в металлах есть свободные электроны проводимости. Которые способны перемещаться в объёме металла между узлами решётки. Но чтобы покинуть металл им недостаточно энергии. Так как их удерживают Кулоновские силы притяжения между положительными ионами решётки и электронами.

Электроны совершают хаотическое тепловое движение, перемещаясь по проводнику. Подходя к границе металла, где отсутствуют положительные ионы, они замедляются и в итоге возвращаются внутрь под действием силы Кулона, которая стремится приблизить два разноименный заряда. Но если металл подогреть, то тепловое движение усиливается, и электрон приобретает достаточно энергии чтобы покинуть поверхность металла.

При этом вокруг катода образуется так называемое электронное облако. Это электроны, вышедшие из поверхности проводника, и при отсутствии внешнего электрического поля они вернутся обратно в него. Так как, теряя электроны, проводник заряжается положительно. Это тот случай если бы мы сначала подогрели катод, а электрометр при этом был бы разряжен. Поле бы внутри при этом отсутствовало.

Но поскольку на электрометре есть заряд, он создает поле, которое заставляет двигаться электроны. Помните на аноде у нас положительный заряд к нему, и стремятся электроны под действием поля. Таким образом, в вакууме наблюдается электрический ток.

Если скажем, мы подключим электрометр наоборот, что при этом произойдет. Получится, что на аноде лампы будет отрицательный потенциал, а на катоде положительный. Все электроны, вылетевшие с поверхности катода, тут же вернутся обратно под действием поля. Поскольку катод теперь будет иметь еще больший положительный потенциал, он будет притягивать электроны. А на аноде будет избыток электронов отталкивающих электроны с поверхности катода.

Рисунок 2 — зависимость ток от напряжения для вакуумной лампы

Такая лампа называется вакуумный диод. Она способна пропускать ток только в одном направлении. Вольтамперная характеристика такой лампы состоит из двух участков. На первом участке выполняется закон Ома. То есть с увеличением напряжения все больше электронов вылетевших с катода долетают до анода и тем самым увеличивается ток. На втором участке все электроны, вылетевшие с катода, долетают до анода и с дальнейшим увеличением напряжения ток не увеличивается. Просто нет нужного количества электронов. Этот участок называется насыщением.

Поделитесь с друзьями или сохраните для себя:

Загрузка...