Является простая модель пуассоновского потока. Стационарный пуассоновский поток отказов

Интервал времени между двумя соседними событиями простейшего потока имеет распределение:

f 1 (x) = f(x) = (x³0),

где - интенсивность потока.

Используя метод имитации показательного (экспоненциального) распределения, получаем следующий способ моделирования пуассоновского потока:

t 0 =0; t j = t j -1 - (1/ ) lnu , (j=1,2,3,...).

Величина u - случайное число, получаемое от ДСЧ.

Равномерный поток

Для этого потока событий считается, что промежуток времени между последовательными событиями равномерно распределён на интервале , т.е.

f(x)=1/(b-a) , (a£x£b).

f 1 (x)=2(b-x)/(b-a) 2 ;

F 1 (x)=1-[(b-x) 2 /(b-a) 2 ] , (a£x£b)

Применяя для моделирования метод обратной функции, получим алгоритм вычисления первого момента времени

где u получают от ДСЧ.

Окончательно имеем следующий алгоритм моделирования равномерного потока:

1) момент времени t 1 наступления первого события вычисляется по формуле

2) для последующих моментов времени производимы вычисления по формуле

t j =t j -1 + a + (b-a)u;

Величина u вырабатывается ДСЧ.

Поток Эрланга порядка k

Потоком Эрланга k-го порядка называют поток событий, получающегося "прореживанием" простейшего потока, когда сохраняется каждая k-я точка (событие) в потоке, а все промежуточные выбрасываются.

Интервал времени между двумя соседними событиями в потоке Эрланга k-го порядка представляет собой сумму k независимых случайных величин Z 1 ,Z 2 ,...,Z k , имеющих показательное распределение с параметром λ:

Закон распределения случайной величины Z называется законом Эрланга k-го порядка и имеет плотность

, (x > 0).

Математическое ожидание и дисперсия случайной величины Z соответственно равны:

M[Z]=k/ ; D[Z]=k/ 2 .

На основе определения потока Эрланга получается простой способ моделирования: прореживается пуассоновский поток с интенсивностью = /k, т.е. в пуассоновском потоке допускаем моменты времени с номерами 1,2,...,k-1, а k-й момент оставляем, т.к. он принадлежит новому потоку и т.д. Таким образом, моменты времени потока Эрланга вычисляются по формулам:



где - интенсивность потока Эрланга k-го порядка, u j - случайные числа от ДСЧ.

3. ОБЪЕКТЫ И СРЕДСТВА ИССЛЕДОВАНИЯ

Объектами исследования в лабораторной работе являются потоки событий, образованные слиянием нескольких потоков с известными характеристиками.

В процессе имитации потоков событий используются различные методы сортировки.

Одним из простых методов сортировки является метод пузырька (BUBBLE) который позволяет массив A, содержащий N элементов, расположить, например, в возрастающем порядке. Соответствующий алгоритм приведен на рис.4.1. Однако. Более эффективным методом для данного типа задач будет метод вставки.

процедура BUBBLE(A, N);

Цикл I=1,N1;

Если A(K) £ A(J) то идти к 20;

Если (K³1), то идти к 10;

Рис.4.1. Подпрограмма сортировки методом пузырька

В лабораторной работе могут быть использованы и другие более эффективные методы сортировки (например, адресная сортировка и т.п.).

4. ПОДГОТОВКА К РАБОТЕ

4.1. Ознакомиться с основными типами потоков событий.

4.2. Ознакомиться с методами моделирования пуассоновского, равномерного потока событий и потока Эрланга порядка k.

4.3. Ознакомиться с методами сортировки массивов чисел.

5. ПРОГРАММА РАБОТЫ

В некоторую систему массового обслуживания по различным каналам поступают заявки, образующие поток событий заданного типа. На входе системы потоки сливаются в один. Составить алгоритм и программу имитации результирующего потока, указанного в варианте.

Первые 100 моментов времени поступления заявок в результирующем потоке вывести на печать. По первым 1000 заявкам рассчитать оценку средней интенсивности потока. Найденную оценку сравнить с теоретическим значением интенсивности потока.

5.1. Поток образован слиянием трёх пуассоновских потоков событий с интенсивностями 1 , 2 , 3 (1/с) (табл.5.1.).

Таблица 5.1.

Вариант
1 2,5 1,5
2 0,5
3 0,5 0,5 0,5

5.2. Поток образован слиянием двух равномерных потоков с параметрами a 1 , b 1 и a 2 , b 2 (с) (табл. 5.2.).

Таблица 5.2.

Вариант
a 1 1,5
b 1 2,5 1,5
a 2 0,5
b 2

5.3. Поток образован слиянием пуассоновского потока с интенсивностью (1 /с) и равномерного потока с параметрами a и b (с) (табл.5 3.).

Таблица 5.3.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

6.1. Дать определение потока событий.

6.2. Как строится вероятностное описание потока событий.

6.3. В чём состоит способ моделирования стационарного потока с ограниченным последствием.

6.4. Охарактеризовать пуассоновский поток и способ его моделирования.

6.5. Охарактеризовать равномерный поток и способ его моделирования.

6.6. Дать характеристику потока Эрланга k-го порядка и метода его имитации.

6.7. Привести характеристики потока событий, исследованного в лабораторной работе.

Лабораторная работа 6

В предыдущих лекциях мы научились имитировать наступление случайных событий. То есть мы можем разыграть — какое из возможных событий наступит и в каком количестве. Чтобы это определить, надо знать статистические характеристики появления событий, например, такой величиной может быть вероятность появления события, или распределение вероятностей разных событий, если типов этих событий бесконечно много.

Но часто еще важно знать, когда конкретно наступит то или иное событие во времени.

Когда событий много и они следуют друг за другом, то они образуют поток . Заметим, что события при этом должны быть однородными, то есть похожими чем-то друг на друга. Например, появление водителей на АЗС, желающих заправить свой автомобиль. То есть, однородные события образуют некий ряд. При этом считается, что статистическая характеристика этого явления (интенсивность потока событий) задана. Интенсивность потока событий указывает, сколько в среднем происходит таких событий за единицу времени. Но когда именно произойдет каждое конкретное событие надо определить методами моделирования. Важно, что, когда мы сгенерируем, например, за 200 часов 1000 событий, их количество будет равно примерно величине средней интенсивности появления событий 1000/200 = 5 событий в час, что является статистической величиной, характеризующей этот поток в целом.

Интенсивность потока в некотором смысле является математическим ожиданием количества событий в единицу времени. Но реально может так оказаться, что в один час появится 4 события, в другой — 6, хотя в среднем получается 5 событий в час, поэтому одной величины для характеристики потока недостаточно. Второй величиной, характеризующей насколько велик разброс событий относительно математического ожидания, является, как и ранее, дисперсия. Собственно именно эта величина определяет случайность появления события, слабую предсказуемость момента его появления. Про эту величину мы расскажем в следующей лекции.

Поток событий — это последовательность однородных событий, наступающих одно за другим в случайные промежутки времени. На оси времени эти события выглядят как показано на рис. 28.1 .


Примером потока событий могут служить последовательность моментов касания взлетной полосы самолетами, прилетающими в аэропорт.

Интенсивность потока λ — это среднее число событий в единицу времени. Интенсивность потока можно рассчитать экспериментально по формуле: λ = N /T н , где N — число событий, произошедших за время наблюдения T н .

Если интервал между событиями τ j равен константе или определен какой-либо формулой в виде: t j = f (t j – 1) , то поток называется детерминированным . Иначе поток называется случайным .

Случайные потоки бывают:

  • ординарные : вероятность одновременного появления двух и более событий равна нулю;
  • стационарные : частота появления событий λ (t ) = const(t ) ;
  • без последействия : вероятность появления случайного события не зависит от момента совершения предыдущих событий.

Пуассоновский поток

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток — это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a — параметр Пуассона.

Если λ (t ) = const(t ) , то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ) , то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0 ) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С ) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, — другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет — график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток — поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x – σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r — равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ — интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом — в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час] ). Необходимо промоделировать этот процесс в течение T н = 100 часов . m = 1/λ = 24/8 = 3 , то есть в среднем одна деталь за три часа. Заметим, что σ = 3 . На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3 .

Моделирование неординарных потоков событий

Если известно, что поток не является ординарным, то необходимо моделировать кроме момента возникновения события еще и число событий, которое могло появиться в этот момент. Например, вагоны на железнодорожную станцию прибывают в составе поезда в случайные моменты времени (ординарный поток поездов). Но при этом в составе поезда может быть разное (случайное) количество вагонов. В этом случае о потоке вагонов говорят как о потоке неординарных событий.

Допустим, что M k = 10 , σ = 4 (то есть, в среднем в 68 случаях из 100 приходит от 6 до 14 вагонов в составе поезда) и их число распределено по нормальному закону. В место, отмеченное (*) в предыдущем алгоритме (см. рис. 28.6 ), нужно вставить фрагмент, показанный на рис. 28.8 .

Пример 2 . Очень полезным в производстве является решение следующей задачи. Каково среднее время суточного простоя оборудования технологического узла, если узел обрабатывает каждое изделие случайное время, заданное интенсивностью потока случайных событий λ 2 ? При этом экспериментально установлено, что привозят изделия на обработку тоже в случайные моменты времени, заданные потоком λ 1 партиями по 8 штук, причем размер партии колеблется случайно по нормальному закону с m = 8 , σ = 2 (см. лекцию 25). До начала моделирования T = 0 на складе изделий не было. Необходимо промоделировать этот процесс в течение T н = 100 часов.

На рис. 28.9 представлен алгоритм, генерирующий случайным образом поток прихода партий изделий на обработку и поток случайных событий — выхода партий изделий с обработки.

На рис. 28.10 показан результат работы алгоритма — моменты времени, когда детали приходили на операцию, и моменты времени, когда детали покидали операцию. На третьей линии видно, сколько деталей стояло в очереди на обработку (лежало на складе узла) в разные моменты времени.

Отмечая для обрабатывающего узла времена, когда он простаивал в ожидании очередной детали (см. на рис. 28.10 участки времени, выделенные красной штриховкой), мы можем посчитать суммарное время простоев узла за все время наблюдения, а затем рассчитать среднее время простоя в течение суток. Для данной реализации это время вычисляется так:

T пр. ср. = 24 · (t 1 пр. + t 2 пр. + t 3 пр. + t 4 пр. + … + t N пр.)/T н .

Задание 1 . Меняя величину σ , установите зависимость T пр. ср. (σ ) . Задавая стоимость за простой узла 100 евро/час, установите годовые потери предприятия от нерегулярности в работе поставщиков. Предложите формулировку пункта договора предприятия с поставщиками «Величина штрафа за задержку поставки изделий».

Задание 2 . Меняя величину начального заполнения склада, установите, как изменятся годовые потери предприятия от нерегулярности в работе поставщиков в зависимости от принятой на предприятии величины запасов.

Моделирование нестационарных потоков событий

В ряде случаев интенсивность потока может меняться со временем λ (t ) . Такой поток называется нестационарным . Например, среднее количество за час машин скорой помощи, покидающих станцию по вызовам населения большого города, в течение суток может быть различным. Известно, например, что наибольшее количество вызовов падает на интервалы с 23 до 01 часа ночи и с 05 до 07 утра, тогда как в остальные часы оно вдвое меньше (см. рис. 28.11 ).

В этом случае распределение λ (t ) может быть задано либо графиком, либо формулой, либо таблицей. А в алгоритме, показанном на рис. 28.6 , в место, помеченное (**), нужно будет вставить фрагмент, показанный на рис. 28.12 .

Эффективность работы АЗС в значительной мере определяется степенью исправности топливораздаточных колонок (ТРК). Предположим, что на ТРК действует пуассоновский поток  


Рассмотрим особенности построения каждого из уровней. Практически наиболее часто входящие потоки требований предполагаются пуассоновскими /47, 70, 74, 80/. Пуассоновские потоки характеризуются стационарностью, ординарностью и отсутствием последействия. Рассмотрим эти свойства.  

В рассматриваемой макромодели входящие потоки требований в общем обладают свойствами стационарности, ординарности и отсутствия последействия. Пуассоновский поток полностью описывается одним параметром - интенсивностью потока Я. Приближенная формула для Я имеет вид  

В простейшем случае (пуассоновский поток) вероятность появления требования в любой малый промежуток времени пропорциональна длине этого промежутка и не зависит от того, возникали или нет требования в предшествующие промежутки времени.  

Так как мы рассматриваем однородный пуассоновский поток судов с интенсивностью ц, то совместное выполнение равенств  

Y(t) = k и Y(T-t)= q-k (это следует из отсутствия последействия в пуассоновском потоке). Поэтому  

Поток, получаемый в результате случайного разрежения или объединения пуассоновских потоков, также является пуассоновским.  

Например, при аналитическом описании потока данных это может быть пуассоновский поток требований, обладающий ординарностью, стационарностью и отсутствием последействия. Это может быть поток с равномерным распределением требований. Если распределение задается эмпирическими данными, значения 7i1 7i2,. .., щ могут быть элементами гистограмм и т.п.  

Часто встречаются преобразования, требующие объединения потоков, поступающих по различным входам. В этом случае выходной сигнал может представлять объединение этих потоков в один с другими характеристиками. Например, если по двум входам в блок С поступают пуассоновские требования, то выходной сигнал может представлять собой также пуассоновский поток с параметром, равным сумме параметров исходных потоков.  

Пусть единичные платежи следуют друг за другом через случайные промежутки времени, распределенные по показательному закону с параметром Я > 0 (пуассоновский поток платежей), дифференциальная функция распределения которого имеет вид  

Для нестационарного пуассоновского потока закон распределения промежутка / уже не является показательным, так как зависит от положения на оси Ot и вида зависимости Я(7). Однако для некоторых задач при сравнительно небольших изменениях Я(0 его можно приближенно считать показательным с интенсивностью Я, равной среднему значению Я(0-  

Таким образом, для исследуемой системы S с дискретными состояниями и непрерывным временем переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенной интенсивностью Я.  

В рассматриваемой модели емкость следует считать ограниченной. Входящий поток требований исходит из ограниченного числа эксплуатируемых машин (N - k), которые в случайные моменты времени выходят из строя и требуют обслуживания. При этом каждая машина из (N - k) находится в эксплуатации. Генерирует пуассоновский поток требований с интенсив-  

Представим автомобиль как некоторую систему S с дискретными состояниями iSj,. 2. .... Sn, которая переходит из состояния S/ в состояние Sj(i - 1, 2,. .., n,j = I, 2,. .., и) под воздействием пуассоновских потоков событий (отказов) с интенсивностями Хд. Будем рассматривать следующие состояния автомобиля, в которых он может находиться в процессе эксплуатации и которые характеризуются целодневными простоями  

Пуассоновский поток событий 53  

Заметим, что, в то время как сам пуассоновский поток k (t) наступлений обстоятельств, влекущих ликвидацию счета вкладчиком, является в рамках нашей модели ненаблюдаемым, вероятность q (tu,t) сохранения счета и ожидаемая продолжительность XI1 = Mt - 10 существования счета могут быть оценены, в принципе, по наблюдаемым статистическим данным. Имея же статистические оценки т - 10 и 4-(tu,t) для величин Мт - 0 и q (t0,t), легко получить оценки Л. =(т. -)" и Х =-(i-t0) ln (0 0 для параметра Л ненаблюдаемого пуассоновского процесса. Оцениваемый таким образом параметр Х имеет смысл ожидаемого числа появлений в единицу времени обстоятельств, влекущих закрытие счета.  

Процесс рождения популяции предпринимателей или новых предпринимателей таким образом можно рассматривать как простейший пуассоновский поток.  

Для простейшего пуассоновского потока вероятность того, что за время г произойдет ровно т событий, равна  

Определение 5.8. Стационарный пуассоновский поток называется простейшим.  

Рассмотрим нестационарный пуассоновский поток с интенсивностью Mf), некоторый промежуток времени длиной г>0, начинающийся с момента t0 (и заканчивающийся, следовательно, в момент +г) и дискретную случайную величину Х р г) - число событий, наступающих в потоке за промежуток времени от ta до t0+r.  

Следствие 6.1. В нестационарном пуассоновском потоке с интенсивностью A(t) вероятность того, что за промежуток времени от t0 до t0+r  

Определение 6.2. Элементом вероятности появления события в нестационарном пуассоновском потоке называется вероятность >,(АО появления события за элементарный (достаточно малый) промежуток времени от t0 до t0+bt.  

Теорема 6.2. Для элемента вероятности появления события за элементарный промежуток времени от t0 до t0+Af в нестационарном пуассоновском потоке с интенсивностью A(t) имеет место приближенная формула  

Интенсивность нестационарного пуассоновского потока A(t)  

Однако в последние года доказано, "что если на систему обслуживания, состоящую из /7 приборов поступает пуассоновский поток интенсивности /I и длительность обслуживания подчинена совершенно произвольному закону распределения Ц (ЭС), математическое овдание которого I/ с, то для предельных вероятностей Р, сохраняет свою силу формула (36), . Следовательно в стационарном режиме вероятности /. зависят не от особенностей распределения вероятностей длительности обслуживания, а только от средней длительности обслуживания... як  

Рассмотрим решение такой задачи в условиях Нефтекум-ского УБР. Анализ работы службы испытания позволил составить статистические ряды интенсивности сдачи скважин на испытание и продолжительности испытания. Изучение рядов позволило сделать вывод, что поток скважин, поступающих в испытание, является одинарным стационарным потоком без последствия, т. е. обладает свойствами пуассоновского потока. С достаточной степенью точности можно допустить, что время обслуживания распределяется по показательному закону . На основании статистических рядов составлены таблицы распределения интенсивности сдачи скважин на испытание (табл. 36)  

Задача эта формулируется следующим образом поток требований - пуассоновский с интенсивностью Я длительность обслуживания распределена но показательному закону , причем средняя длительность обслуживания iAy. Если число обслуживающих устройств равно п, то при стационарном пуассоновском потоке требований вероятности Pt (t) (вероятности того, что в момент t обслуживанием, заняты I прибороь) близки к их предельным значениям (формула Эрлаша)  

Если объединяются несколько независимых ординарных потоков с сопоставимыми интенсивностями, то с ростом числа слагаемых потоков объединенный поток приближается к простейшему с возможной нестационарностью. Если слагаемые потоки стационарны , то в пределе получается пуассоновский поток. Интенсивность объединенного потока равна сумме интенсивностей каждого из них.  

Каждый из входящих в блок агрегатов является сложной системой , состоящей из большого числа элементов. Отказ каждого из них может привести к утрате способности выполнения поставленной задачи всего агрегата. Поток отказов агрегата во времени образуется в результате наложения множества событий - потоков отказов элементов, входящих в его состав. При решении практической задачи отказы в элементах можно рассматривать как независимые (или слабозависимые) и ординарные события, поэтому для суммарного потока отказов всего агрегата правомерно применение предельной теоремы потоков в теории случайных процессов . Данная теорема определяет условия, при которых сумма независимых (или слабо зависимых) ординарных потоков событий сводится к пуассоновскому распределению числа отказов агрегата на заданном промежутке времени т. Условия состоят в том, что складываемые потоки должны оказывать приблизительно одинаковое влияние на суммарный поток. В инженерной практике рекомендуется считать сумму более 5-7 потоков за пуассоновскии поток, если интенсивности этих потоков имеют одинаковый порядок. Данное утверждение основано на многократных исследованиях, проведенных методом статистических испытаний. Исходя из вышеизложенного, число отказов т каждого агрегата блока КЭС, возникающих за промежуток (/, М-т), имеет распределение вида  

В период нормальной эксплуатации агрегата (на центральном участке) при решении практических задач часто полагают Я,(/)= Я = onst, т.е. принимают модель стационарного пуассоновского потока отказов. При этом формула (2.8.1) принимает вид  

Согласно показателем безотказности блока КЭС принимается средняя наработка на отказ ТНБ, а показателем ремонтопригодности - среднее время восстановления работоспособного состояния после отказа ТВБ- Чтобы получить формулы для расчета этих показателей воспользуемся свойством

За эталон потока в моделировании принято брать пуассоновский поток .

Пуассоновский поток - это ординарный поток без последействия.

Как ранее было указано, вероятность того, что за интервал времени (t 0 , t 0 + τ ) произойдет m событий, определяется из закона Пуассона:

где a - параметр Пуассона.

Если λ (t ) = const(t ), то это стационарный поток Пуассона (простейший). В этом случае a = λ · t . Если λ = var(t ), то это нестационарный поток Пуассона .

Для простейшего потока вероятность появления m событий за время τ равна:

Вероятность непоявления (то есть ни одного, m = 0) события за время τ равна:

Рис. 28.2 иллюстрирует зависимость P 0 от времени. Очевидно, что чем больше время наблюдения, тем вероятность непоявления ни одного события меньше. Кроме того, чем более значение λ , тем круче идет график, то есть быстрее убывает вероятность. Это соответствует тому, что если интенсивность появления событий велика, то вероятность непоявления события быстро уменьшается со временем наблюдения.

Вероятность появления хотя бы одного события (P ХБ1С) вычисляется так:

так как P ХБ1С + P 0 = 1 (либо появится хотя бы одно событие, либо не появится ни одного, - другого не дано).

Из графика на рис. 28.3 видно, что вероятность появления хотя бы одного события стремится со временем к единице, то есть при соответствующем длительном наблюдении события таковое обязательно рано или поздно произойдет. Чем дольше мы наблюдаем за событием (чем более t ), тем больше вероятность того, что событие произойдет - график функции монотонно возрастает.

Чем больше интенсивность появления события (чем больше λ ), тем быстрее наступает это событие, и тем быстрее функция стремится к единице. На графике параметр λ представлен крутизной линии (наклон касательной).

Если увеличивать λ , то при наблюдении за событием в течение одного и того же времени τ , вероятность наступления события возрастает (см. рис. 28.4 ). Очевидно, что график исходит из 0, так как если время наблюдения бесконечно мало, то вероятность того, что событие произойдет за это время, ничтожна. И наоборот, если время наблюдения бесконечно велико, то событие обязательно произойдет хотя бы один раз, значит, график стремится к значению вероятности равной 1.

Изучая закон, можно определить, что: m x = 1/λ , σ = 1/λ , то есть для простейшего потока m x = σ . Равенство математического ожидания среднеквадратичному отклонению означает, что данный поток - поток без последействия. Дисперсия (точнее, среднеквадратичное отклонение) такого потока велика. Физически это означает, что время появления события (расстояние между событиями) плохо предсказуемо, случайно, находится в интервале m x σ < τ j < m x + σ . Хотя ясно, что в среднем оно примерно равно: τ j = m x = T н /N . Событие может появиться в любой момент времени, но в пределах разброса этого момента τ j относительно m x на [–σ ; +σ ] (величину последействия). На рис. 28.5 показаны возможные положения события 2 относительно оси времени при заданном σ . В данном случае говорят, что первое событие не влияет на второе, второе на третье и так далее, то есть последействие отсутствует.

По смыслу P равно r (см. лекцию 23. Моделирование случайного события. Моделирование полной группы несовместных событий), поэтому, выражая τ из формулы (*) , окончательно для определения интервалов между двумя случайными событиями имеем:

τ = –1/λ · Ln(r ) ,

где r - равномерно распределенное от 0 до 1 случайное число, которое берут из ГСЧ, τ - интервал между случайными событиями (случайная величина τ j ).

Пример 1 . Рассмотрим поток изделий, приходящих на технологическую операцию. Изделия приходят случайным образом - в среднем восемь штук за сутки (интенсивность потока λ = 8/24 [ед/час]). Необходимо промоделировать этот процесс в течение T н = 100 часов. m = 1/λ = 24/8 = 3, то есть в среднем одна деталь за три часа. Заметим, что σ = 3. На рис. 28.6 представлен алгоритм, генерирующий поток случайных событий.

На рис. 28.7 показан результат работы алгоритма - моменты времени, когда детали приходили на операцию. Как видно, всего за период T н = 100 производственный узел обработал N = 33 изделия. Если запустить алгоритм снова, то N может оказаться равным, например, 34, 35 или 32. Но в среднем, за K прогонов алгоритма N будет равно 33.33… Если посчитать расстояния между событиями t сi и моментами времени, определяемыми как 3 · i , то в среднем величина будет равна σ = 3.

Рассмотрим некоторую физическую систему S с дискретными состояниями которая переходит из состояния в состояние под влиянием каких-то случайных событий, например, вызовы на телефонной станции, выходы строя (отказы) элементов аппаратуры, выстрелы, направленные по цели и т. д.

Будем себе это представлять так, будто события, переводящие систему из состояния в состояние, представляют собой какие-то потоки событий (потоки вызовов, потоки отказов, потоки выстрелов и т. д.).

Пусть система S с графом состояний, показанным на рис. 4.27, в момент t находится в состоянии S; и может перейти из него в состояние под влиянием какого-то пуассоновского потока событий с интенсивностью как только появляется первое событие этого потока, система мгновенно переходит (перескакивает) из S в Как мы знаем, вероятность этого перехода за элементарный промежуток времени (элемент вероятности перехода) равна . Таким образом, плотность вероятности перехода в непрерывной цепи Маркова представляет собой не что иное, как интенсивность потока событий, переводящего систему по соответствующей стрелке.

Если все потоки событий, переводящие систему S из состояния в состояние, пуассоновские (стационарные или нестационарные - безразлично), то процесс, протекающий в системе, будет марковским. Действительно, пуассоновский поток обладает отсутствием последействия, поэтому, при заданном состоянии системы в данный момент, ее переходы в другие состояния в будущем обусловлены только появлением каких-то событий в пуассоновских потоках, а вероятности появления этих событий не зависят от «предыстории» процесса.

В дальнейшем, рассматривая марковские процессы в системах с дискретными состояниями и непрерывным временем (непрерывные марковские цепи), нам удобно будет во всех случаях рассматривать переходы системы из состояния в состояние как происходящие под влиянием каких-то потоков событий, хотя бы в действительности эти события были единичными. Например, работающее техническое устройство мы будем рассматривать как находящееся под действием потока отказов, хотя фактически оно может отказать только один раз. Действительно, если устройство отказывает в тот момент, когда приходит первое событие потока, то совершенно все равно - продолжается после этого поток отказов или же прекращается: судьба устройства от этого уже не зависит. Для нас же будет удобнее иметь дело именно с потоками событий.

Итак, рассматривается система S, в которой переходы из состояния в состояние происходят под действием пуассоновских потоков событий с определенными интенсивностями. Проставим эти интенсивности (плотности вероятностей переходов) на графе состояний системы у соответствующих стрелок.

Получим размеченный граф состояний (рис. 4.27); по которому, пользуясь правилом, сформулированным в § 3, можно сразу записать дифференциальные уравнения Колмогорова для вероятностей состояний.

Пример 1. Техническая система S состоит из двух узлов: I и II; каждый из них независимо от другого может отказывать (выходить из строя). Поток отказов первого узла - пуассоновский, с интенсивностью второго - также пуассоновский, с интенсивностью Каждый узел сразу после отказа начинает ремонтироваться (восстанавливаться). Поток восстановлений (окончаний ремонта ремонтируемого узла) для обоих узлов - пуассоновский с интенсивностью К.

Составить граф состояний системы и написать уравнения Колмогорова для вероятностей состояний. Определить, при каких начальных условиях нужно решать эти уравнения, если в начальный момент система работает исправно.

Решение. Состояния системы:

Оба узла неправды,

Первый узел ремонтируется, второй исправен,

Первый узел исправен, второй ремонтируется,

Оба узла ремонтируются.

Размеченный граф состояний системы показан на рис. 4.28.

Интенсивности потоков событий на рис. 4.28 проставлены из следующих соображений. Если система S находится в состоянии то на нее действуют два потока событий: поток неисправностей узла I с интенсивностью X, переводящий ее в состояние и поток неисправностей узла II с интенсивностью переводящий ее в Пусть теперь система находится в состоянии (узел I ремонтируется, узел II - исправен). Из этого состояния система может, во-первых, вернуться в (это происходит под действием потока восстановлений с интенсивностью ); во-вторых, - перейти в состояние (когда ремонт узла I еще не закончен, а узел II тем временем вышел из строя); этот переход происходит под действием потока отказов узла II с интенсивностью Интенсивности потоков у остальных стрелок проставляются аналогично.

Обозначая вероятности состояний и пользуясь правилом, сформулированным в § 3, запишем уравнения Колмогорова для вероятностей состояний:

Начальные условия, при которых нужно решать эту систему: при

Заметим, что, пользуясь условием

можно было бы уменьшить число уравнений на одно. Действительно, любую из вероятностей можно выразить через остальные и подставить в уравнения (6.1), а уравнение, содержащее в левой части производную чтой вероятности - отбросить.

Заметим, кроме того, что уравнения (6.1) справедливы как для постоянных интенсивностей пуассоновских потоков X, так и для переменных:

Пример 2. Группа в составе пяти самолетов в строю «колонна» (рис. 4.29) совершает налет на территорию противника. Передний самолет (ведущий) является постановщиком помех; до тех пор, пока он не сбит, идущие за ним самолеты не могут быть обнаружены и атакованы средствами ПВО противника. Атакам подвергается только постановщик помех. Поток атак - пуассоновский, с интенсивностью X (атак/час). В результате атаки постановщик помех поражается с вероятностью р.

Если постановщик помех поражен (сбит), то следующие за ним самолеты обнаруживаются и подвергаются атакам ПВО; на каждый из них (до тех пор, пока он не поражен) направляется пуассоновский поток атак с интенсивностью X; каждой атакой самолет поражается с вероятностью р. Когда самолет поражен, атаки по нему прекращаются, но на другие самолеты не переносятся.

Написать уравнения Колмогорова для вероятностей состояний системы и указать начальные условия.

Решение. Будем нумеровать состояния системы соответственно числу сохранившихся самолетов в группе:

Все самолеты целы;

Постановщик помех сбит, остальные самолеты целы;

Постановщик помех и один бомбардировщик сбиты, остальные самолеты целы;

Постановщик помех и два бомбардировщика сбиты, остальные самолеты целы;

Постановщик помех и три бомбардировщика сбиты, один самолет цел;

Все самолеты сбиты.

Состояния мы отличаем друг от друга по числу сохранившихся бомбардировщиков, а не по тому, какой именно из них сохранился, так как все бомбардировщики по условиям задачи равноценны - атакуются с одинаковой интенсивностью и поражаются с одинаковой вероятностью.

Граф состояний системы показан на рис. 4 30. Чтобы разметить этот граф, определим интенсивности потоков событий, переводящих систему из состояния в состояние.

Из состояния систему переводит поток поражающих (или «успешных») атак, т. е. тех атак, которые приводят к поражению постановщика (разумеется, если он раньше не был поражен).

Интенсивность потока атак равна X, но не все они - поражающие: каждая из них оказывается поражающей только с вероятностью . Очевидно, интенсивность потока поражающих атак равна эта интенсивность и проставлена в качестве у первой слева стрелки на графе (рис. 4.30).

Займемся следующей стрелкой и найдем интенсивность Система находится в состоянии т. е., целы и могут быть атакованы четыре самолета. Она перейдет в состояние за время если за это время какой-нибудь из самолетов (все равно, какой) будет сбит. Найдем вероятность противоположного события - за время ни один самолет не будет сбит:

Здесь отброшены члены высшего порядка малости относительно Вычитая эту вероятность из единицы, получим вероятность перехода из за время (элемент вероятности перехода):

что и проставлено у второй слева стрелки. Заметим, что интенсивность этого потока событий просто равна сумме интенсивностей потоков поражающих атак, направленных на отдельные самолеты Рассуждая наглядно, можно получить этот вывод следующим образом: система S в состоянии состоит из четырех самолетов; на каждый из них действует поток поражающих атак с интенсивностью значит на систему в целом действует суммарный поток поражающих атак с интенсивностью

Решение. Размеченный граф состояний показан на рис. 4.31.

Уравнения Колмогорова!

Начальные условия же, что и в примере 2.

Отметим, что в данном параграфе мы только выписывали дифференциальные уравнения для вероятностей состояний, но не занимались решением этих уравнений.

По этому поводу можно заметить следующее. Уравнения для вероятностей состояний представляют собой линейные дифференциальные уравнения с постоянными или переменными коэффициентами - в зависимости от того, постоянны или переменны интенсивности потоков событий, переводящих систему из состояния в состояние.

Система нескольких линейных дифференциальных уравнений такого типа только в редких случаях может быть проинтегрирована в квадратурах: обычно такую систему приходится решать численно - либо вручную, либо на аналоговой вычислительной машине (АВМ), либо, наконец, на ЭЦВМ. Все эти способы решения систем дифференциальных уравнений затруднений не доставляют; поэтому самое существенное - уметь записать систему уравнений и сформулировать для нее начальные условия, чем мы и ограничились здесь.


Поделитесь с друзьями или сохраните для себя:

Загрузка...