Стандартные буферные растворы. Стандарт-титры и буферные растворы для калибровки

Государственная система обеспечения
единства измерений

СТАНДАРТ-ТИТРЫ ДЛЯ ПРИГОТОВЛЕНИЯ
БУФЕРНЫХ РАСТВОРОВ -
РАБОЧИХ ЭТАЛОНОВ
рН 2- го и 3- го РАЗРЯДОВ

Технические и метрологические характеристики

Методы их определения

Москва
Стандартинформ
200
8

Предисловие

Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 «Межгосударственная система стандартизации. Основные положения» и ГОСТ 1.2-97 «Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Порядок разработки, принятия, применения, обновления и отмены»

Сведения о стандарте

1 РАЗРАБОТАН Федеральным государственным унитарным предприятием «Всероссийский научно-исследовательский институт физико-технических и радиотехнических измерений» (ФГУП «ВНИИФТРИ») Федерального агентства по техническому регулированию и метрологии

2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 26 от 8 декабря 2004 г.)

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

Азстандарт

Беларусь

Госстандарт Республики Беларусь

Казахстан

Госстандарт Республики Казахстан

Кыргызстан

Кыргызстандарт

Молдова

Молдова-Стандарт

Российская Федерация

Федеральное агентство по техническому регулированию и метрологии

Таджикистан

Таджикстандарт

Узбекистан

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 15 апреля 2005 г. № 84-ст межгосударственный стандарт ГОСТ 8.135-2004 введен в действие непосредственно в качестве национального стандарта Российской Федерации с 1 августа 2005 г.

6 ПЕРЕИЗДАНИЕ. Декабрь 2007 г.

Информация о введении в действие (прекращении действия) настоящего стандарта и изменений к нему публикуется в указателе «Национальные стандарты».

Информация об изменениях к настоящему стандарту публикуется в указателе (каталоге) «Национальные стандарты», а текст изменений - в информационных указателях «Национальные стандарты». В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в информационном указателе «Национальные стандарты»

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Дата введения - 2005-08-01

1 Область применения

Настоящий стандарт распространяется на стандарт-титры, представляющие собой точные навески химических веществ во флаконах или ампулах, предназначенные для приготовления буферных растворов с определенными значениями рН, и устанавливает технические и метрологические характеристики и методы их определения.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

3.4 Стандарт-титры изготавливают с навесками химических веществ, необходимыми для приготовления 0,25; 0,50 и 1 дм 3 буферного раствора. Номинальная масса навески вещества, необходимая для приготовления 1 дм 3 буферного раствора, приведена в таблице .

Таблица 1

Химические вещества, входящие в состав стандарт-титра

Номинальная масса навески вещества m ном входящего в состав стандарт-титра, для приготовления 1 дм 3 буферного раствора 1 , г

Номинальное значение рН буферного раствора при 25 °С 2)

× 2Н 2 О

25,219

1,48

Калий тетраоксалат 2-водный КН 3 (С 2 О 4) 2 × 2Н 2 О

12,610

1,65

Натрий гидродигликолят C 4 H 5 O 5 Na

7,868

3,49

Калий гидротартрат КНС 4 Н 4 С 6

9,5 3)

3,56

Калий гидрофталат КНС 8 Н 4 О 4

10,120

4,01

Кислота уксусная СН 3 СООН

Натрий ацетат CH 3 COONa

6,010

8,000

4,64

Кислота уксусная СН 3 СООН

Натрий ацетат CH 3 COONa

0,600

0,820

4,71

Пиперазинфосфат C 4 H 10 N 2 H 3 PO 4

4,027

6,26

Натрий моногидрофосфат Na 2 HPO 4

3,3880

3,5330

6,86

Калий дигидрофосфат КН 2 РО 4

Натрий моногидрофосфат Na 2 HPO 4

1,1790

4,3030

7,41

Калий дигидрофосфат КН 2 РО 4

Натрий моногидрофосфат Na 2 HPO 4

1,3560

5,6564

7,43

Трис 4) (HOCH 2 ) 3 CNH 2

Трис 4) гидрохлорид (НОСН 2) 3 CNH 2 HCl

2,019

7,350

7,65

Натрий тетраборат 10-водный Na 2 B 4 O 7 × 10Н 2 О

3,8064

9,18

Натрий тетраборат 10-водный Na 2 B 4 O 7 × 10Н 2 О

19,012

9,18

Натрий углекислый Na 2 CO 3

Натрий углекислый кислый NaHCO 3

2,6428

2,0947

10,00

Кальций гидрооксид Са(ОН) 2

1,75 3)

12,43

1) Для приготовления буферного раствора объемом 0,50 и 0,25 дм 3 массу навески вещества необходимо уменьшить соответственно в 2 и 4 раза.

2) Зависимость значений рН буферных растворов от температуры приведена в приложении .

3) Навеска для приготовления насыщенного раствора.

4) Трис-(оксиметил)-аминометан.

3.5 Массы навесок веществ в стандарт-титрах должны соответствовать номинальным значениям с допускаемым отклонением не более 0,2 %. Массы навесок веществ в стандарт-титрах для приготовления насыщенных растворов гидротартрата калия и гидрооксида кальция должны соответствовать номинальным значениям с допускаемым отклонением не более 1 %.

3.6 Буферные растворы, приготовленные из стандарт-титров, должны воспроизводить номинальные значения рН, приведенные в таблице .

Допускаемые отклонения от номинального значения рН не должны выходить за пределы:

± 0,01 рН - для буферных растворов - рабочих эталонов рН 2-го разряда;

± 0,03 рН - для буферных растворов - рабочих эталонов рН 3-го разряда.

3.7 Стандарт-титры допускается изготавливать в виде навесок порошков химических веществ и в виде их водных растворов (стандарт-титры с уксусной кислотой - только в виде водных растворов), расфасованных в герметически закрываемые флаконы или запаянных в стеклянные ампулы.

Для приготовления водных растворов используют дистиллированную воду по ГОСТ 6709 .

3.8 Требования к расфасовке, упаковке, маркировке и транспортированию стандарт-титров - по техническим условиям на конкретные стандарт-титры.

3.9 Эксплуатационная документация на стандарт-титры должна содержать следующую информацию:

Назначение: разряд (2-й или 3-й) рабочих эталонов рН - буферных растворов, приготавливаемых из стандарт-титров;

Номинальное значение рН буферных растворов при 25 °С;

Объем буферных растворов в кубических дециметрах;

Методику (инструкцию) приготовления буферных растворов из стандарт-титров, разработанную в соответствии с приложением настоящего стандарта;

Срок годности стандарт-титра.

4 Методы определения характеристик стандарт-титров

4.1 Количество образцов n для определения характеристик каждой модификации стандарт-титров отбирают по ГОСТ 3885 в зависимости от объема партии стандарт-титров данной модификации, но не менее трех образцов стандарт-титров в ампулах (для определения рН) и не менее шести образцов во флаконах (3 - для определения массы, 3 - для определения рН).

4.2 Используемые средства измерений должны иметь свидетельства о поверке (сертификаты) с действующим сроком поверки.

4.3 Измерения проводят в нормальных условиях:

температура окружающего воздуха, °С 20 ± 5;

относительная влажность воздуха, % от 30 до 80;

атмосферное давление, кПа (мм. рт. ст.) от 84 до 106 (от 630 до 795).

4.4 Массу навески химического вещества во флаконе 1) определяют по разнице массы флакона с навеской и массы пустого чистого флакона. Измерения массы навески и массы флакона проводят с погрешностью не более 0,0005 г на аналитических весах (класс точности не ниже 2 по ГОСТ 24104).

1) В стеклянной ампуле массу навески стандарт-титра не определяют.

4.4.1 Отклонение D i , %, массы навески от номинального значения массы для каждого из образцов определяют по формуле

где m ном - номинальная масса навески химического вещества, входящего в состав стандарт-титра (см. таблицу );

i

m i - результат измерения массы i -го образца (i = 1 ... n ), г.

4.4.2 Если хотя бы для одного из образцов значение D i будет более 0,2 % (а для стандарт-титров для приготовления насыщенных буферных растворов - более 1 %), то партию стандарт-титров данной модификации бракуют.

4.5.1 Значение рН буферного раствора - рабочего эталона рН 2-го разряда, приготовленного из стандарт-титра, определяют при помощи рабочего эталона рН 1-го разряда (ГОСТ 8.120) при температуре буферных растворов (25 ± 0,5) °С в соответствии с методиками выполнения измерений рН, входящими в нормативные документы рабочего эталона рН 1-го разряда.

4.5.1.1 Отклонение рН от номинального значения (D рН ) i , определяют по формуле

(D рН ) i = | рН ном - рН i | ,

где i - номер образца стандарт-титра;

рН ном - номинальное значение рН буферного раствора по таблице ;

рН i - результат измерения значения рН i -го образца (i = 1 ... n ).

4.5.1.2 Если значение (D рН ) i для каждого из буферных растворов не более 0,01 рН, то стандарт-титры данной партии считают пригодными для приготовления рабочего эталона рН 2-го разряда.

Если значение (D рН ) i для каждого из буферных растворов не более 0,03 рН, то стандарт-титры данной партии считают пригодными для приготовления рабочего эталона рН 3-го разряда.

(D рН ) i

4.5.4 Значение рН буферного раствора - рабочего эталона рН 3-го разряда, приготовленного из стандарт-титра, определяют эталонным рН-метром 2-го разряда (ГОСТ 8.120) в соответствии с руководством по эксплуатации рН-метра при температуре буферных растворов (25 ± 0,5) °С.

4.5.2.1 Отклонение рН от номинального значения (D рН ) i определяют по .

4.5.2.2 Если значение (D рН ) i для каждого из буферных растворов не более 0,03 рН, то стандарт-титры данной партии считают пригодными для приготовления рабочего эталона рН 3-го разряда.

Если хотя бы для одного из буферных растворов (D рН ) i будет более 0,03 рН, то измерения повторяют на удвоенном числе образцов.

Результаты повторных измерений являются окончательными. При отрицательных результатах партию стандарт-титров бракуют.

Приложение А
(обязательное)

Химические вещества для стандарт-титров получают путем дополнительной очистки химических реактивов квалификации не ниже ч.д.а. Химические реактивы квалификаций ос.ч и х.ч могут использоваться без дополнительной очистки. Однако конечным критерием их пригодности для стандарт-титров является значение рН буферных растворов, приготовленных из стандарт-титров. Для очистки веществ необходимо использовать дистиллированную воду (далее - вода) с удельной электропроводностью не более 5 × 10 -4 См × м -1 при температуре 20 °С по ГОСТ 6709 .

А.1 Калий тетраоксалат 2-водный КН 3 (С 2 О 4) 2 × 2Н 2 О очищают двойной перекристаллизацией из водных растворов при температуре 50 °С. Сушат в сушильном шкафу с естественной вентиляцией при температуре (55 ± 5) °С до постоянной массы.

А.2 Натрий гидродигликолят (оксидиацетат) C 4 H 5 O 5 Na высушивают при температуре 110 °С до постоянной массы. Если химического реактива не имеется в наличии, то натрий гидродигликолят получают половинной нейтрализацией соответствующей кислоты гидрооксидом натрия. После кристаллизации кристаллы отфильтровывают на пористом стеклянном фильтре.

А.3 Калий гидротартрат (калий виннокислый кислый) КНС 4 Н 4 О 6 очищают двойной перекристаллизацией из водных растворов; сушат в сушильном шкафу при температуре (110 ± 5) °С до постоянной массы.

А.4 Калий гидрофталат (калий фталевокислый кислый) КНС 8 Н 4 О 4 очищают двойной перекристаллизацией из горячих водных растворов с добавкой углекислого калия при первой перекристаллизации. Отфильтровывают выпавшие кристаллы при температуре не ниже 36 °С. Сушат в сушильном шкафу с естественной вентиляцией при температуре (110 ± 5) °С до постоянной массы.

А.5 Кислоту уксусную СН 3 СООН (ГОСТ 18270) очищают одним из следующих способов:

а) перегонкой с добавлением небольшого количества безводного ацетата натрия;

б) двойным дробным вымораживанием (после окончания процесса кристаллизации избыток жидкой фазы удаляется).

А.6 Натрий уксуснокислый 3-водный (натрий ацетат) CH 3 COONa × 3Н 2 О (ГОСТ 199) очищают двойной перекристаллизацией из горячих водных растворов с последующим прокаливанием соли при температуре (120 ± 3) °С до постоянной массы.

А.7 Пиперазинфосфат C 4 H 10 N 2 H 3 PO 4 × Н 2 О синтезируют из пиперазина и ортофосфорной кислоты (ГОСТ 6552), очищают тройной перекристаллизацией из спиртовых растворов. Сушат над силикагелем в темноте в эксикаторе до постоянной массы.

А.8 Калий фосфорнокислый однозамещенный (калий дигидрофосфат) КН 2 РО 4 (ГОСТ 4198) очищают двойной перекристаллизацией из водно-этанольной смеси с объемным соотношением 1: 1 и последующим высушиванием в сушильном шкафу при температуре (110 ± 5) °С до постоянной массы.

А.9 Натрий фосфорнокислый двузамещенный 12-водный (натрий моногидрофосфат) Na 2 HPO 4 (безводный) получают из 12-водной соли Na 2 HPO 4 × 12Н 2 О (ГОСТ 4172) трехкратной перекристаллизацией из горячих водных растворов. Сушат (обезвоживают) в сушильном шкафу с естественной вентиляцией поэтапно в следующих режимах:

При (30 ± 5) °С - до постоянной массы

При (50 ± 5) °С - » » »

При (120 ± 5)°С- » » »

А.10 Трис-(оксиметил)-аминометан (HOCH 2 ) 3 CNH 2 сушат при 80 °С в сушильном шкафу до постоянной массы.

А.11 Трис-(оксиметил)-аминометан гидрохлорид (HOCH 2 ) 3 CNH 2 HCl сушат при 40 °С в сушильном шкафу до постоянной массы.

А.12 Натрий тетраборат 10-водный Na 2 B 4 O 7 × 10Н 2 О (ГОСТ 4199) очищают трехкратной перекристаллизацией из водных растворов при температуре (50 ± 5) °С. Сушат при комнатной температуре в течение двух-трех дней. Окончательную подготовку тетрабората натрия проводят выдерживанием соли в стеклографитовой (кварцевой, платиновой или фторопластовой) чашке в эксикаторе над насыщенным раствором смеси хлорида натрия и сахарозы или насыщенным раствором KBr при комнатной температуре до постоянной массы.

А.13 Натрий углекислый Na 2 CO 3 (ГОСТ 83) очищают трехкратной перекристаллизацией из водных растворов с последующим высушиванием в сушильном шкафу при температуре (275 ± 5) °С до постоянной массы.

А.14 Натрий углекислый кислый NaHCO 3 (ГОСТ 4201) очищают трехкратной перекристаллизацией из водных растворов с барботированием углекислым газом.

А.15 Кальций гидрооксид Са(ОН) 2 получают кальцинированием углекислого кальция СаСО 3 (ГОСТ 4530) при температуре (1000 ± 10) °С в течение 1 ч. Образовавшуюся окись кальция СаО охлаждают на воздухе при комнатной температуре и медленно, небольшими порциями заливают водой при постоянном перемешивании до получения суспензии. Суспензию подогревают до кипения, охлаждают и фильтруют через стеклянный фильтр, затем снимают с фильтра, сушат в вакуум-эксикаторе до постоянной массы и измельчают до тонкого порошка. Хранят в эксикаторе.

Приложение Б
(справочное)

Номер модификации стандарт-титра

Химические вещества, входящие в состав стандарт-титра (модификации по таблице )

рН буферных растворов при температуре, °С

Калий тетраоксалат 2-водный

1,48

1,48

1,48

1,49

1,49

1,50

1,51

1,52

1,53

1,53

Калий тетраоксалат 2-водный

1,64

1,64

1,64

1,65

1,65

1,65

1,65

1,65

1,66

1,67

1,69

1,72

Натрий гидродигликолят

3,47

3,47

3,48

3,48

3,49

3,50

3,52

3,53

3,56

3,60

Калий гидротартрат

3,56

3,55

3,54

3,54

3,54

3,55

3,57

3,60

3,63

Калий гидрофталат

4,00

4,00

4,00

4,00

4,00

4,01

4,01

4,02

4,03

4,05

4,08

4,12

4,16

4,21

4,66

4,66

4,65

4,65

4,65

4,64

4,64

4,65

4,65

4,66

4,68

4,71

4,75

4,80

Кислота уксусная + натрий ацетат

4,73

4,72

4,72

4,71

4,71

4,71

4,72

4,72

4,73

4,74

4,77

4,80

4,84

4,88

Пиперазинфосфат

6,48

6,42

6,36

6,31

6,26

6,21

6,14

6,12

6,03

5,95

6,96

6,94

6,91

6,89

6,87

6,86

6,84

6,83

6,82

6,81

6,82

6,83

6,85

6,90

Натрий моногидрофосфат + калий дигидрофосфат

7,51

7,48

7,46

7,44

7,42

7,41

7,39

7,37

Натрий моногидрофосфат + калий дигидрофосфат

7,51

7,49

7,47

7,45

7,43

7,41

7,40

Трис гидрохлорид + трис

8,40

8,24

8,08

7,93

7,79

7,65

7,51

7,33

7,26

7,02

6,79

Натрий тетраборат

9,48

9,41

9,35

9,29

9,23

9,18

9,13

9,07

9,05

8,98

8,93

8,90

8,88

8,84

Натрий тетраборат

9,45

9,39

9,33

9,28

9,23

9,18

9,14

9,09

9,07

9,01

8,97

8,93

9,91

8,90

Натрий углекислый кислый + натрий углекислый

10,27

10,21

10,15

10,10

10,05

10,00

9,95

9,89

9,87

9,80

9,75

9,73

9,73

9,75

Кальций гидрооксид

13,36

13,16

12,97

12,78

12,60

Примечание - Для приготовления растворов со значением рН > 6 дистиллированную воду необходимо прокипятить и охладить до температуры 25 - 30 °С. При подготовке стеклянной посуды не допускается использовать синтетические моющие средства.

В.1.1 Стандарт-титр переносят в мерную колбу 2-го класса по ГОСТ 1770 (далее - колба).

В.1.2 Извлекают флакон (ампулу) из упаковки.

В.1.3 Промывают поверхность флакона (ампулы) водой и просушивают фильтровальной бумагой.

В.1.4 Вставляют в колбу воронку, вскрывают флакон (ампулу) в соответствии с инструкцией изготовителя, дают содержимому полностью высыпаться в колбу, промывают флакон (ампулу) изнутри водой до полного удаления вещества с поверхностей, промывные воды сливают в колбу.

В.1.5 Заполняют колбу водой примерно на две трети объема, взбалтывают до полного растворения содержимого (за исключением насыщенных растворов гидротартрата калия и гидрооксида кальция).

В.1.6 Заполняют колбу водой, не долив воды до метки 5 - 10 см 3 . В течение 30 мин термостатируют колбу в водяном термостате при температуре 20 °С (колбы с насыщаемыми растворами гидротартрата калия и гидрооксида кальция заполняют водой полностью и термостатируют не менее 4 ч при температуре 25 °С и 20 °С соответственно, периодически перемешивая суспензию в колбе встряхиванием).

В.1.7 Доводят водой объем раствора в колбе до метки, закрывают пробкой и тщательно перемешивают содержимое.

В пробах, отбираемых из насыщенных растворов гидротартрата калия и гидрооксида кальция, осадок удаляют фильтрованием или декантацией.

В.2 Хранение рабочих эталонов рН

В.2.1 Рабочие эталоны рН хранят в плотно закрытой стеклянной или пластмассовой (полиэтиленовой) посуде в затемненном месте при температуре не выше 25 °С. Срок хранения рабочих эталонов - 1 мес с момента приготовления, за исключением насыщенных растворов гидротартрата калия и гидрооксида кальция, которые готовят непосредственно перед измерением рН и которые хранению не подлежат.


Стандартные электродные потенциалы в водных растворах при 25 о С

Электрод Полуреакция Е 0 , В
Электроды, обратимые относительно катиона
Zn 2+ , Zn Zn 2+ + 2e – → Zn –0,763
Cd 2+ , Cd Cd 2+ + 2e – → Cd –0,403
Ni 2+ , Ni Ni 2+ + 2e – → Ni –0,250
Pb 2+ , Pb Pb 2+ + 2e – → Pb –0,126
H + , H 2 (г) H + + e – → ½ H 2 0,000
Cu 2+ , Cu Cu 2+ + 2e – → Cu 0,337
Ag + , Ag Ag + + e – → Ag 0,799
Электроды, обратимые относительно аниона
Cl 2 (г), Cl – ½ Cl 2 + e – → Cl – 1,360
Электроды второго рода
AgCl, Cl – (насыщ.), Ag AgCl + e – → Ag + Cl – 0,222
Hg, Hg 2 Cl 2 , KCl(насыщ.) Hg 2 Cl 2 + 2е – → 2Hg + 2Cl – 0,2415 = = E (н.к.э.)
Окислительно-восстановительные электроды
Fe(CN) 6 3– , Fe(CN) 6 4– (Pt) Fe(CN) 6 3– + e – → Fe(CN) 6 4– 0,360
MnO 4 – , MnO 4 2– (Pt) MnO 4 – + e – → MnO 4 2– 0,564
Fe 3+ , Fe 2+ (Pt) Fe 3+ + e – → Fe 2+ 0,771
Br 2 , 2Br – (Pt) Br 2 + 2e – → 2Br – 1,087
BrO 3 – , Br – (Pt) BrO 3 – + 6H + + 6e – → Br – + 3H 2 O 1,450

Предельная эквивалентная электрическая проводимость ионов при 25 о С

Потенциалы полуволн (Е ½) некоторых ионов

Электродная полуреакция Среда (фон) Е ½ , В
Сr 3+ + 3e – = Cr 0,5 М раствор NaClO 4 –1,46
Сd 2+ + 2e – = Cd 1 М раствор HCl –0,64
Сu 2+ + e – = Cu + 0,1 М раствор KSCN –0,02
Сu + + e – = Cu 0,1 М раствор KSCN –0,39
Fe 2+ + 2e – = Fe 0,1 М раствор KCl –1,30
Fe 3+ + e – = Fe 2+ 1 М раствор (NH 4) 2 CO 3 –0,44
Mn 2+ + 2e – = Mn 1 М раствор KCl –1,51
Ni 2+ + 2e – = Ni 0,1 М раствор KCl –1,10
Pb 2+ + 2e – = Pb 0,1 М раствор NaOH –0,76
Zn 2+ + 2e – = Zn 1 М раствор KCl –1,02

Длины волн видимой части спектра и соответствующие им цвета

Фотометрия пламени

Приложение 6

Вопросы зачетного коллоквиума по курсу ФХМА

1. Чувствительность, точность, правильность методов анализа. Расчет доверительного интервала для результатов анализа.

2. Эмиссионный спектральный анализ. Возбуждение, наблюдение и регистрация линий спектра. Интенсивность спектральной линии. Качест-венный анализ. Зависимость интенсивности излучения от концентрации. Формула Ломакина – Шайбе. Количественный анализ.

3. Фотометрия пламени. Источники возбуждения излучения. Процес-сы в пламени. Подавление ионизации и учет анионного эффекта. Блок-схема прибора. Методы калибровочного графика и добавок. Области примене-ния. Достоинства и недостатки метода.

4. Атомно-абсорбционный анализ. Резонансное поглощение атомов. Блок-схема прибора. Источники излучения и способ атомизации анализи-руемого вещества. Зависимость оптической плотности от концентрации ве-щества. Чувствительность, селективность, универсальность, экспрессность метода.

5. Молекулярно-абсорбционный анализ. Происхождение окраски анали-тических форм. Спектрофотометрическая кривая. Интегральный, средний и максимальный коэффициенты светопоглощения. Закон Бугера – Ламбер-та – Бера. Оптическая плотность и пропускание. Физические и химические причины отклонений от закона светопоглощения. Влияние различных фак-торов на величину оптической плотности. Избирательность анализа, мас-кировка примесей. Экстракционный фотометрический метод.

6. Спектрофотометры и фотоколориметры. Методы фотометрическо-го анализа (уравнивание и сравнение интенсивностей световых потоков). Методы калибровочного графика и добавок. Дифференциальная фотомет-рия, ее преимущества.

7. Фотометрия светорассеивающих систем. Турбидиметрия и нефе-лометрия. Фотометрическое и турбидиметрическое титрование.

8. Флуориметрический анализ. Сущность явления флуоресцен­ции. Закономерности флуресценции. Правило Стокса. Закон Вавилова. Факто-ры, влияющие на интенсивность флуоресценции, концентрационное туше-ние. Принципиальная схема осуществления флуориметрических измере-ний. Качественный и количественный анализ. Чувствительность и воспро-изводимость анализа при флуориметрических измерениях.

9. Колебательная спектроскопия. Общие представления о видах ана-литических задач, решаемых в ИК-спектроскопии. Качественный и коли-чественый анализ по ИК-спектрам.

10. Кондуктометрические методы. Зависимость электропроводности раствора от различных факторов. Прямая кондуктометрия. Возможности метода. Кондуктометрическое титрование. Принципиальная схема уста-новки для кондуктометрического анализа. Высокочастотное титрование. Сущность и особенности метода.

11. Потенциометрические методы анализа. Системы электродов. Мем-бранные электроды, их разновидности. Строение стеклянного электрода и зависимость его потенциала от рН. Ион-селективная потенциометрия. Потенциометрическое титрование. Индикаторные электроды. Интеграль-ные и дифференциальные кривые титрования. Автоматическое потенцио-метрическое титрование. Возможности и недостатки потенциометрии.

12. Вольтамперометрические виды анализа. Полярография. Принци-пиальная схема полярографа. Система электродов. Ртутный капельный и твердые электроды. Области применения. Полярограммы. Предельный диффузионный ток. Уравнение Ильковича. Уравнение полярографической волны. Потенциал полуволны. Уравнение Гейровского. Выбор полярогра-фического фона. Качественный и количественный анализ. Современные полярографические методы.

13. Амперометрическое титрование. Сущность метода. Принципи-альная схема амперометрической установки. Выбор системы электродов. Выбор потенциала индикаторного электрода. Типы кривых титрования. Возможности и недостатки метода. Примеры практического осуществле-ния анализа.

14. Электрогравиметрический анализ. Общая характеристика метода. Процессы на электродах. Условия электроосаждения. Требования, предъявляемые к осадкам. Внутренний электролиз. Практическое исполь-зование метода электрогравиметрии.

15. Классификация хроматографических методов. Фронтальный, элю-ентный и вытеснительный методы осуществления хроматографического разделения. Хроматограммы (выходные кривые). Зависимость формы выходных кривых от вида изотерм адсорбции. Обмер хроматограмм. Абсо-лютные и исправленные параметры удерживания. Эффективность хрома-тографического процесса.

16. Газовая хроматография. Ее разновидности. Принципиальная схема газового хроматографа. Детекторы. Их классификация. Неподвижная фаза, природа взаимодействия анализируемого вещества с неподвижной фазой. Оптимальный режим хроматографирования. Уравнение Ван-Деемтера. Идентификация в газовой хроматографии.

17. Качественный анализ. Индексы удерживания. Количественный анализ. Методы нормировки, абсолютной градуировки, внутреннего стан-дарта. Поправочные коэффициенты. Возможности газовой хроматографии.

18. Жидкостная хроматография. Ионообменная колоночная хромато-графия. Ионообменное равновесие. Константа ионного обмена, уравнение Никольского. Выходная кривая сорбции, динамическая обменная емкость ионита. Классификация ионообменников. Сорбционные ряды. Применение ионного обмена для очистки, концентрирования и разделения в анализе.

19. Плоскостная хроматография. Распределительная бумажная хро-матография. Подвижные фазы. Одномерная, двумерная, круговая бумажная хроматография. Качественный анализ. Коэффициент движения R f . Эффективность бумажной хроматографии. Проявление пятен. Коли-чественный анализ. Тонкослойная хроматография. Виды неподвижной фазы. Особенности осуществления процесса разделения, идентификации и определения количества анализируемого вещества.

20. Высокоэффективная жидкостная хроматография (ВЭЖХ). Прин-ципиальная схема жидкостного хроматографа высокого давления. Типы детекторов. Неподвижные фазы: нормальные и обращенные. Элюенты. Фактор емкости, его физический смысл. Эффективность разделения. Уравнение Снайдера. Градиентное элюирование. Связь между эффектив-ностью, селективностью и емкостью колонки. Достоинства и ограничения метода.

Владимир Иванович Луцик

Александр Евгеньевич Соболев

Юрий Валентинович Чурсанов

ФИЗИКО-ХИМИЧЕСКИЕ МЕТОДЫ АНАЛИЗА

Учебное пособие

Издание первое

Редактор И.В. Шункова

Корректор

Технический редактор Г.В. Комарова

Подписано в печать

Формат 64х80/16 Бумага писчая

Физ. печ. л. Усл. печ. л. Уч.-изд. л.

Тираж экз. Заказ № С–

________________________________________________________________

Редакционно-издательский центр

Тверского государственного технического университета

170026 г. Тверь, наб. А. Никитина, 22

Для приготовления исходных растворов применяют калиброванные мерные колбы (ГОСТ 1770-74).

Измеренное значение рН для рабочих буферных растворов должно отличаться от величин, указанных в таблицах, не более чем на 0,1 рН.

2. ПОДГОТОВКА ВЕЩЕСТВ И ПРИГОТОВЛЕНИЕ ИСХОДНЫХ РАСТВОРОВ

Молекулярная масса по международным атомным массам 1971 г.

Предварительная подготовка реактива

Концентрация раствора

Приготовление исходного раствора

1. Калий фталевокислый (калий бифталат) С8Н5O4K

ТУ Минхимпрома

70 г препарата растворяют в 200 мл горячей воды (кристаллизацию ведут при температуре не ниже 35 °С, так как при более низкой температуре образуются кристаллы трифталата калия - более кислой соли). Полученные кристаллы сушат до постоянной массы при 110 - 115 °С.

При наличии препарата с содержанием основного вещества в пределах 99,9 - 100,0 % предварительная подготовка вещества не проводится

40,846 г полученного препарата растворяют в воде и объем раствора доводят водой до 1 л

2. Калий фосфорнокислый однозамещенный КН2РO4

100 г препарата растворяют при нагревании до кипения в 150 мл воды. Раствор фильтруют горячим.

При постоянном перемешивании фильтрат охлаждают до 10 °С. Затем добавляют 150 мл этилового спирта. Выделившиеся при постоянном помешивании фильтрата кристаллы отфильтровывают на отсасывающей воронке и снова перекристаллизовывают в тех же условиях; кристаллы сушат до постоянной массы при 110 ± 5 °С. При наличии препарата с содержанием основного вещества в пределах 99,9 - 100,0 % предварительная подготовка вещества не проводится

13,610 г полученного препарата растворяют в воде и объем раствора доводят водой до 1 л

Для стабилизации раствора добавляют 3 - 4 капли толуола или кристаллик тимола. При работе с водородным электродом прибавление тимола для стабилизации не допускается

3. Калий хлористый КСl

Препарат прокаливают в платиновом тигле при 500 °С до постоянной массы

7,456 г (для 0,1М раствора) и 14,912 г (для 0,2М раствора) полученного препарата растворяют в воде и объем раствора доводят водой до 1 л

4. Кислота аминоуксусная C2H5O2N

7,507 г аминоуксусной кислоты и 5,845 г хлористого натрия, приготовленного по п. , растворяют в воде и объем раствора доводят водой до 1 л. Для стабилизации раствора добавляют 3 - 4 капли толуола или кристаллик тимола. При работе с водородным электродом прибавление тимола не допускается

5. Кислота лимонная с6н8о7н2о

21,014 г препарата растворяют в воде и объем раствора доводят водой до 1 л

Для предупреждения появления плесени следует добавить в раствор кристаллик тимола или несколько миллиграммов йодной ртути (HgJ2).

При работе с водородным электродом прибавление тимола не допускается

6. Кислота соляная НСl

Растворы готовят соответствующим разбавлением концентрированной соляной кислоты или используют ампулы, содержащие определенное количество соляной кислоты

Плотность концентрированной кислоты, г/см3

Количество кислоты, мл

Отмеренное количество кислоты медленно вливают в воду и доводят объем раствора водой до 1 л.

Коэффициент поправки устанавливают объемным методом по прокаленному при 270 - 280 °С углекислому натрию в присутствии метилового оранжевого

7. Кислота уксусная 99 - 100 %-ная сн3соон

12,010 г препарата растворяют в воде и объем раствора доводят водой до 1 л

8. Кислота янтарная с4н6о4

100 г препарата растворяют при кипячении в 165 мл воды, раствор фильтруют через воронку с обогревом, фильтрат постоянно перемешивают. После охлаждения раствора кристаллы отфильтровывают на отсасывающей воронке и снова перекристаллизовывают в тех же условиях. Кристаллы высушивают при 100 °С до постоянной массы. При наличии препарата с содержанием основного вещества 99,9 - 100,0 % предварительная подготовка вещества не проводится

5,905 г полученного препарата растворяют в воде и объем раствора доводят водой до 1 л. Для стабилизации раствора добавляют один кристаллик тимола. При работе с водородным электродом стабилизированным раствором не пользуются

9. Натрия гидроокись NaOH

В фарфоровом стакане в 250 мл воды растворяют 250 г гидроокиси натрия.

После охлаждения раствор переливают в полиэтиленовые флаконы или склянки, покрытые парафином, с резиновой или полиэтиленовой пробкой, и в течение 15 - 20 суток выдерживают до полного выпадения осадка углекислого натрия, нерастворимого в растворе гидроокиси натрия указанной концентрации. В отстоявшемся прозрачном растворе устанавливают содержание гидроокиси натрия титрованием, для чего 1 мл раствора разбавляют водой до 50 мл и титруют 1 н. раствором кислоты (серной или соляной) в присутствии 1 капли раствора индикатора метилового оранжевого. 1 мл точно 1 н. раствора кислоты соответствует 0,04 г NaOH

Растворы готовят соответствующим разбавлением объемов концентрированного раствора гидроокиси натрия, содержащих следующие количества препарата:

Концентрация раствора 1М; 0,2 М; 0,1 М

Количество NaOH соответственно 40,0; 8,0; 4,0 г

Отмеренный объем раствора доводят водой до 1 л.

Коэффициент поправки устанавливают титрованием кислотой соответствующей нормальности по метиловому оранжевому. 1 М раствор хранят в полиэтиленовом флаконе

10. Натрий тетраборнокислый (бура) Na2B4O7×10Н2О

100 г препарата растворяют в 550 мл воды при 50 - 60 °С (при более высокой температуре кристаллизуется Na2B4O7×5Н2O). Раствор фильтруют и после охлаждения до 25 - 30 °С при энергичном помешивании раствора происходит кристаллизация буры.

Образующиеся кристаллы отфильтровывают через отсасывающую воронку и снова перекристаллизовывают в тех же условиях. Кристаллы отжимают между листами фильтровальной бумаги, насыпают тонким слоем в чашку Петри и выдерживают в эксикаторе над смоченными водой кристаллами бромистого натрия до постоянной массы. Сохраняют кристаллы буры в том же эксикаторе

19,070 г полученного препарата растворяют в воде и объем раствора доводят водой до 1 л

11. Натрий фосфорнокислый двузамещенный Na2HPO4×12H2O

а) 150 г препарата растворяют в 150 мл воды при нагревании до 100 °С. Раствор фильтруют горячим и после охлаждения отфильтровывают выпавшие кристаллы. Перекристаллизацию повторяют при нагревании до 100 °С. Перекристаллизованный препарат нагревают в фарфоровой чашке на водяной бане при непрерывном перемешивании до полного высыхания препарата. Полученную соль высушивают в эксикаторе над плавленным хлористым кальцием в течение суток.

В перекристаллизованном препарате (Na2HPO4×2Н2O) проверяют содержание основного вещества. Для этого около 0,5000 г препарата растворяют в 50 мл воды, прибавляют 2 - 3 мл насыщенного раствора хлористого натрия и титруют 0,1 н. раствором соляной кислоты в присутствии индикатора метилового красного. При необходимости вносят поправку в величину навески.

1 мл точно 0,1 н. раствора соляной кислоты соответствует 0,0178 г Na2HPO4×2H2O

б) 75 г препарата растворяют в 250 мл воды, нагретой до 60 °С. Раствор фильтруют горячим, фильтрат охлаждают при постоянном перемешивании до 10 °С. Выпавшие кристаллы отфильтровывают на отсасывающей воронке и снова перекристаллизовывают в тех же условиях. Полученную соль сначала высушивают при температуре не выше 30 °С в течение 24 ч, затем продолжают высушивание в сушильном шкафу при 50 °С в течение 3 - 4 ч, и, наконец, при 120 ± 5 °С до постоянной массы, не допуская расплавления соли. После высушивания соль имеет состав Na2HPO4

35,600 г препарата состава Na2HPO4 2Н2O (а) или 28,392 г препарата состава Na2HPO4 (б) растворяют в воде и доводят объем раствора водой до 1 л. Для стабилизации раствора добавляют 3 - 4 капли толуола или кристаллик тимола. При работе с водородным электродом прибавление тимола для стабилизации не допускается

12. Натрий хлористый NaCl

Препарат прокаливают при 500 °С в платиновом тигле до постоянной массы

Препарат применяют при приготовлении раствора аминоуксусной кислоты (см. кислота аминоуксусная)

13. Натрий углекислый безводный Na2CO3

Препарат помещают в платиновом тигле с крышкой в песчаную баню так, чтобы уровень песка снаружи был не ниже уровня препарата в тигле. Термометр помещают в песок около тигля, причем резервуар со ртутью термометра должен быть зарыт в песок и находиться на уровне препарата в тигле. Баню нагревают постепенно до 270 - 280 °С. При этой температуре препарат выдерживают около 1 ч периодически перемешивая платиновым шпателем.

После охлаждения препарат взвешивают и повторяют прокаливание до постоянной массы.

Прокаленный препарат переносят в банку с хорошо притертой пробкой и сохраняют в эксикаторе с натронной известью

5,300 г полученного препарата растворяют в воде и объем раствора доводят водой до 1 л

14. Натрий уксуснокислый CH3COONa 3H2O

27,216 г препарата растворяют в воде и объем раствора доводят водой до 1 л

Соляная кислота, мл

0,1 М раствор хлористого калия, мл

0,2 М раствор фталевокислого кислого калия, мл

1 М раствор

0,1 М раствор

0,1 М раствор аминоуксусной кислоты в 0,1 М растворе хлористого натрия, мл

0,1 М раствор соляной кислоты, мл

0,2 М раствор двузамещенного фосфорнокислого натрия, мл

0,1 М раствор лимонной кислоты, мл

0,2 М раствор уксусной кислоты, мл

0,2 М раствор уксуснокислого натрия, мл

0,05 М раствор буры, мл

0,05 М раствор янтарной кислоты, мл

0,05 М раствор буры, мл

0,05 М раствор буры, мл

0,1 М раствор однозамещенного фосфорнокислого калия, мл

0,05 М раствор буры, мл

0,05 М раствор буры, мл

0,1 М раствор соляной кислоты, мл

0,1 М раствор гидроокиси натрия, мл

0,05 М раствор буры, мл

0,05 М раствор углекислого натрия, мл

0,05 М раствор буры, мл

Стандарт титры для приготовления образцовых буферных растворов для рН-метрии

Киевский завод РИАП

ТУ 6-09-2541-72, ГОСТ 8,135-74

ИНСТРУКЦИЯ к пользованию стандарт титрами для рН-метрии, изготовляемыми заводом «РИАП».

I. Способ приготовления образцовых буферных растворов из стандарт-титров

Для приготовления образцовых буферных растворов по ГОСТ 10171-62 необходимо содержимое ампулы количественно перенести в литровую мерную колбу и растворить в дистиллированной воде с удельной электрической проводимостью три температуре 20°С не более 2,10-6сим./см.

При приготовлении буферных растворов фосфатов и буры должна использоваться дистиллированная вода, освобожденная от углекислоты. Приготовленные растворы этих веществ должны быть защищены от доступа углекислоты из воздуха. Остальные буферные растворы (тетраоксалат калия, калий виннокислый кислый и калий фталевокислый кислый) могут готовиться на обычной дистиллированной воде и не защищаться от угольной кислоты воздуха.

Образцовый буферный раствор калия виннокислого кислого должен быть насыщенным при 25°С. При приготовлении его необходимо долго взбалтывать и термостатировать при 25°С. Затем отфильтровать.

II. Метод перенесения стандарт-титра в колбу

Перед употреблением стандарт-титра необходимо снять этикетку с ампулы и промыть наружную поверхность ее дистиллированной водой.

В мерную колбу емкостью 1000 мл вставляют обыкновенную воронку диаметром 9-10 см. Затем в воронку вставляют боек с утолщением. При перенесении содержимого в колбу ампула поворачивается дном вниз и слегка ударяется углублением об острие бойка, затем, не перевертывая ампулы, вторым бойком пробивается верхнее углубление ампулы и дают полностью выйти содержимому.

Не изменяя положения ампулы, последнюю тщательно промывают изнутри дистиллированной водой в количестве шестикратного объема ампулы.

После растворения содержимого ампулы объем жидкости доводят до метки и тщательно перемешивают раствор.

III. Состав

Тип 1. Калий тетраоксалат (KH 3 C 4 O 8 · 2H 2 O) 0,05 М pH 1,68

Для приготовления образцовых буферных растворов по ГОСТ 10171—62 необходимо содержимое ампулы количественно перенести в литровую мерную колбу и растворить в дистиллированной воде с удельной электрической проводимостью три температуре 20°С не более 2,10—6сим./см.

При приготовлении буферных растворов фосфатов и буры должна использоваться дистиллированная вода, освобожденная от углекислоты. Приготовленные растворы этих веществ должны быть защищены от доступа углекислоты из воздуха. Остальные буферные растворы (тетраоксалат калия, калий виннокислый кислый и калий фталевокислый кислый) могут готовиться на обычной дистиллированной воде и не защищаться от угольной кислоты воздуха.

Образцовый буферный раствор калия виннокислого кислого должен быть насыщенным при 25°С. При приготовлении его необходимо долго взбалтывать и термостатировать при 25°С. Затем отфильтровать.


Метод перенесения стандарт-титра в колбу

Перед употреблением стандарт-титра необходимо снять этикетку с ампулы и промыть наружную поверхность ее дистиллированной водой.

В мерную колбу емкостью 1000 мл вставляют обыкновенную воронку диаметром 9—10 см. Затем в воронку вставляют боек с утолщением. При перенесении содержимого в колбу ампула поворачивается дном вниз и слегка ударяется углублением об острие бойка, затем, не перевертывая ампулы, вторым бойком пробивается верхнее углубление ампулы и дают полностью выйти содержимому.

Не изменяя положения ампулы, последнюю тщательно промывают изнутри дистиллированной водой в количестве шестикратного объема ампулы.

После растворения содержимого ампулы объем жидкости доводят до метки и тщательно перемешивают раствор.

Поделитесь с друзьями или сохраните для себя:

Загрузка...