Схема и принцип работы самодельной конденсаторной сварки. Особые виды контактной сварки Обозначение конденсаторной сварки

Контактная сварка – процесс создания монолитного сварного шва путем расплавления кромок свариваемых деталей электрическим током и последующей деформацией сжимающим усилием. Особое распространение технология получила в тяжелой промышленности и служит для беспрерывного производства однотипной продукции.

Данная технология является распространенной при серийном соединении тонколистового металла

Сегодня как минимум один аппарат контактной сварки имеется на каждом заводе, а все благодаря преимуществам технологии:

  • производительность – сварная точка создается не дольше 1 секунды;
  • высокая стабильность работы – однажды настроив устройство оно может работать долгое время без стороннего вмешательства, сохраняя качество работ;
  • низкие затраты на обслуживание – это касается расходных материалов, рабочим элементом служат контактные электроды;
  • возможность работы с машиной специалистов низкой квалификации.

Технология контактной сварки

Простая, на первый взгляд, технология контактной сварки состоит из ряда процедур, обязательных к выполнению. Достичь качественного соединения можно только в случае соблюдения всех технологических особенностей и требований процесса.

Сущность процесса

Для начала стоит разобраться, как работает данная система?

Суть электроконтактной сварки это два неразрывных физических процесса – нагрев и давление. При прохождении через зону соединения электрического тока выделяется тепло, которое служит для расплавления металла. Чтобы обеспечить достаточное выделение тепла сила тока должна достигать нескольких тысяч или даже десятков тысяч ампер. Одновременно с этим на деталь воздействует некоторое давление с одной или обеих сторон, при этом создается плотный шов без видимых и внутренних дефектов.

Процесс соединения связан с локальным нагревом заготовок с одновременным их прижатием

При правильной организации процесса сами детали практически не подвержены нагреву, так как их сопротивление минимально. По мере создания монолитного соединения сопротивление уменьшается, а вместе с тем и сила тока. Подверженные нагреву электроды сварочного аппарата охлаждаются внедренной технологией с применением воды.

Подготовка поверхностей

Существует множество технологий, которые позволяют обработать поверхность перед использованием контактной сварки. Сюда относят:

  • зачистку от грубых загрязнений;
  • обезжиривание;
  • снятие оксидной пленки;
  • сушку;
  • пассирование и нейтрализацию.

Порядок и сами технологии обуславливаются конкретным процессом и видом заготовок.

В целом, перед началом сваривания поверхность должна:

  • обеспечивать минимальное сопротивление между деталью и электродом;
  • обеспечивать равное сопротивление на всей протяженности контакта;
  • свариваемые детали должны иметь гладкие поверхности без выпуклостей и впадин.

Машины для контактной сварки

Оборудование для контактной сварки бывает:

  • неподвижным;
  • передвижным;
  • подвешенным или универсальным.

Разделяют сварки по роду тока на постоянного и переменного тока (трансформаторные, конденсаторные). По способам сваривания бывают точечные, шовные стыковые и рельефные, о которых мы поговорим чуть ниже.

Оборудование может быть как стационарным, так и переносным

Все сварочные устройства точечной сварки состоят из трех частей:

  • электросистемы;
  • механической части;
  • водяного охлаждения.

Электрическая часть отвечает за расплавление деталей, контроль циклов работы и отдыха, а также устанавливает текущие режимы. Механическая составляющая представляет собой пневматическую или гидравлическую систему с различными приводами. Если установлен только привод сжатия, то перед нами точечная разновидность, шовные имеют еще и ролики, а стыковые систему сжатия и осадки изделий. Водяное охлаждение состоит из первичного и вторичного контура, разводящих штуцеров, шлангов, вентилей и реле.

Электроды для контактной сварки

В данном случае электроды не только замыкают электрический контур, но и служат отводом тепла от сварного соединения, передают механическую нагрузку, в ряде случаев помогают передвигать заготовку (роликовые).

Размеры и форма электродов для контактной сварки различаются в зависимости от применяемого оборудования и свариваемого материала

Такое использование обуславливает ряд жестких требований, которым должны соответствовать электроды. Они должны выдерживать температуру свыше 600 градусов, давление до 5 кг/мм2. Именно поэтому их изготавливают из хромовой бронзы, хромциркониевой бронзы или кадмиевой бронзы. Но даже такие мощные сплавы не способны долго выдерживать описанные нагрузки и быстро выходят из строя, снижая качество работ. Размер, состав и другие характеристики электрода подбираются исходя из выбранного режима, типа сварки и толщины изделий.

Дефекты сварки и контроль качества

Как и при любой другой технологии, сварочные соединения должны подвергаться жесткому контролю, для выявления всевозможных дефектов.

Здесь применяются практически все и прежде всего – внешний осмотр. Однако, из-за прижатия деталей, выявить подобным способом бывает очень сложно, поэтому часть изготовленной продукции отбирается и проводится разрез деталей вдоль шва для выявления погрешностей. В случае обнаружения дефекта партия потенциально дефектной продукции отправляется на переработку, а аппарат калибруют.

Разновидности контактной сварки

Технология создания сварного пятна обуславливает разделение процесса на несколько видов:

Точечная контактная сварка

В данном случае сваривание происходит в одной или одновременно в нескольких точках. Прочность шва состоит из множества параметров.

Точечный способ является самым распространенным методом

В этом случае на качество работ влияет:

  • форма и размер электрода;
  • сила тока;
  • сила давления;
  • длительность работ и степень очистки поверхности.

Современные аппараты точечной сварки способны работать с эффективностью 600 сварных соединений в минуту. Подобная технология используется для соединения частей точной электроники, для соединения кузовных элементов автомобилей, самолетов, сельскохозяйственной техники и имеет еще множество других областей использования.

Рельефная сварка

Принцип работы одинаковый с точечной сваркой, но основное отличие заключается в том, что сам сварной шов и электрод имеют схожую, рельефную форму. Рельефность обеспечивается естественной формой деталей или созданием специальных штамповок. Как и точечная сварка, технология применяется практически повсеместно и служит дополняющей, способной сваривать рельефные детали. С ее помощью можно прикреплять кронштейны или опорные детали к плоским заготовкам.

Шовная сварка

Процесс многоточечной сварки, при которой несколько сварных соединений располагаются близко или с перекрытием, формируя единое монолитное соединение. Если между точками имеется перекрытие, то получается герметичный шов, при близком расположении точек шов не герметичен. Так как шов, с использованием расстояния между точками не отличается от созданного точечным швом, подобные аппараты используются редко.

В промышленности более популярным является перекрывающийся, герметичный шов, с помощью которого создают баки, бочки, баллоны и другие емкости.

Стыковая сварка

Здесь детали соединяют, прижимая друг к другу, а затем оплавляют всю плоскость контакта. Технология имеет свои разновидности и разделяется на несколько видов на основании типа металла, его толщины и нужного качества соединения.

Сварочный ток протекает через стык заготовок, расплавляет их и надежно соединяет

Самый простой способ – сварка сопротивлением, подходит для легкоплавких заготовок с малой площадью пятна контакта. Сварка с оплавлением и плавлением с подогревом подходит для более прочных металлов и огромного сечения. Таким способом сваривают части кораблей, якоря и тд.

Выше, описаны наиболее популярные и используемые, но есть и такие виды точечной сварки:

  • шовно-стыковая осуществляется вращающимся электродом с несколькими контактами для замыкания цепи, протягивая заготовку через такой аппарат можно получить негерметичный сплошной шов, состоящий из множества сварных точек;
  • рельефно-точечная деталь сваривается согласно текущего рельефа, однако шов состоит не из сплошного пятна контакта, а из многих точек;
  • по методу Игнатьева в котором сварочный ток протекает вдоль свариваемых частей, поэтому давление не влияет на нагрев изделия и его сваривание.

Обозначение контактной сварки на чертеже

Согласно существующего стандарта условных обозначений точечная сварка имеет следующее обозначение на чертежах:

  1. Сплошной шов. Видимый сплошной шов на общем плане чертежа отмечают основной линией, остальные конструктивные элементы основной тонкой линией. Скрытый сварной сплошной шов обозначен штриховой линией.
  2. Сварные точки. Видимые сварные соединения на общем чертеже отмечают символом “+”, а скрытые не отмечают вовсе.

От видимого, скрытого сплошного шва или видимой сварной точки идет специальная линия с выноской, на которой отмечаются вспомогательные условные обозначения, стандарты, буквенно-цифровые знаки и т.д. В обозначении присутствует буква “К – контактная и маленькая буква “т”-точечная, указывающие на метод выполнения сварки и ее разновидность. Швы, не имеющие обозначения, отмечают линиями без полок.

ГОСТ 15878-79 Регламентирует размеры и конструкции сварных соединений контактной сварки

Вся основная информация подается на линии выноске или под ней, в зависимости от обращенной стороны (лицевая или оборотная). Вся необходимая информация о шве берется из соответствующего ГОСТа, что указывается на сноске или дублируется в таблицу швов.

Техническая документация - это своеобразная книга для конструкторов, проектировщиков, инженеров, мастеров и рабочих. Составляется (пишется) по определенным правилам и требованиям. Это требуется для правильного понимания изложенной информации. Одна из областей технического текста - обозначение сварных швов на чертежах.

Сварочный процесс - технологическая операция образования монолитного соединения. Зона, где происходило расплавление и застывание материала стыкуемых деталей, называется сварным швом.

Виды

Сварной стык подразделяется:

  • Стыковой. Соединение образовано по торцевым поверхностям деталей. Осуществляется с обработкой кромок и без оного. Маркировка «С».
  • Нахлесточный. Плоскости деталей параллельны друг другу и частично заходят одна на другую. Маркировка «Н».

Шов выполняется:

  • Односторонний. Наплавление осуществляется с одной из сторон соединения (стыка).
  • Двусторонний. Обработка происходит с двух сторон.

Необходимость обозначения сварки

Любая конструкция состоит из отдельных деталей (узлов), соединенных между собой тем или иным способом. Один из них - сварка. Стык обладает своими характеристиками, влияющими на работоспособность изделия в целом.

Обозначение сварки на чертеже - это пояснение способа стыковки, формы шва и его геометрические параметры, способ выполнения и другая дополнительная информация. Грамотный инженер почерпнет дополнительные сведения:

  • о прочности - соединение сплошное или прерывистое; кроме этого, в зоне шва образуются термические напряжения;
  • о размерах и форме наплавленного металла;
  • герметичности стыка;
  • время выполнения соединения - до монтажа или в его процессе, и другое.

Расшифровка технической аббревиатуры

Изучение обозначения сварного шва на чертеже можно выполнить двумя способами:

  • начать с азов - чтения специальной литературы, в том числе ГОСТов (аналог - изучение букв по Азбуке);
  • пойти от обратного, то есть начать с рассмотрения примеров как обозначается сварка на чертежах, с постепенным углублением своих знаний.

Примеры

Маркировка сварочного стыка регламентируется ЕСКД. В нее входит:

  • ГОСТ 2.312-72.
  • ГОСТ 5264-80.
  • ГОСТ 14771-76.

По ГОСТ, сварной стык обозначается в технической документации выносной стрелкой:

Расположение надписи сверху стрелки, ниже ее или с обеих сторон показывает на расположение соединения:

  • с лицевой части детали;
  • с обратной (невидимый стык);
  • двусторонняя обработка.

Надпись и стрелка обозначают обратную (закрытую) или лицевую часть, соответственно.

Пример 2.

  • Выполнен с одной стороны, с загибом края, разомкнутый контур, по нормативам ГОСТ 5264-80, электродуговая сварка.

Пример 3.

  • - соединение произведено по сплошной линии в виде кольца;
  • ГОСТ 17771-76 - сварка в облаке газов;
  • Т3 - тавровый стык с обработкой каждой из сторон; разделка кромок отсутствует;
  • УП - газообразная окись углерода, расплавляемый электрод;
  • 6 - величина катета сварочного стыка 6мм;
  • Периодическое исполнение с проваренным сплошным участком 50мм в шахматном порядке (Z), шаг 100мм.

Маркировочные знаки условно чертят над (под) полочкой выносной стрелки:

Применяемые вспомогательные знаки

Обозначение сварки (выдержки из нормативной документации) по отличающимся способам операций (ручной электродуговой, аргоновой) сведены в таблицу:

Способы выполнения сварочного шва отражены в ГОСТ:

  • А - стыковка посредством автоматики с флюсом при отсутствии подкладки, подушки, без предварительного шва;
  • Аф - сварка на автомате с использованием флюса и подущки на его основе;
  • ИН - стыковка осуществляется посредством тугоплавкого электрода из вольфрамового сплава в облаке газов без добавления дополнительного материала;
  • ИНп - стыковка производится электродом из вольфрама в облаке инертных газов с добавлением добавочного материала;
  • ИП - применение расплавляющегося электрода в облаке газов;
  • УП - соединение в среде окиси углерода посредством расплавляющегося электрода.

В целом, расшифровывать и читать обозначение сварных швов в документации почти тоже самое, что учиться читать по Азбуке или Букварю. Требуется запомнить регламентирующие документы (ГОСТ) и грамотно расшифровывать обозначения, приведенные на чертежах.

– ваше любимое слово, вам вряд ли кто-нибудь поверит. Но если вы занимаетесь сваркой и претендуете на статус профессионала высокого класса, вам придется это слово если не полюбить, то относиться со всем уважением.

Его нужно не просто уважать, а хорошо разбираться в положенных государственных стандартах, касающихся типологии сварочных способов. Почему? Потому что, если вы работаете с чем-то серьезнее, чем старый тазик на даче, вы обязательно столкнетесь с рабочими чертежами, где будут в огромных количествах значки, буквы и аббревиатуры.

Все верно, без технических спецификаций и стандартных обозначений – никуда. Современные сварочные технологии – это широкий набор самых разных методов со своими требованиями и техническими нюансами. Все они укладываются в несколько стандартов, по которым мы сейчас пройдемся и рассмотрим самым внимательным образом.

Обозначения сварки на чертежах по ГОСТу на первый взгляд выглядят устрашающе. Но если разобраться и запастись оригинальными версиями трех главных ГОСТов по видам и обозначениям , обозначения станут понятными и информативными, а ваша работа точной и профессиональной.

Виды сварных соединений.

Сначала ЕСКД – это Единая Система Конструкторской Документации, если проще – комплекс всевозможных стандартов, согласно которым должны выполняться все современные технические чертежи, в том числе документация по сварочным работам.

В составе этой системы есть несколько стандартов, которые нас интересуют:

  1. ГОСТ 2.312-72 под названием «Условные изображения и обозначения швов сварных соединений».
  2. ГОСТ 5264-80 «Ручная дуговая сварка. Соединения сварные», в котором исчерпывающе описаны все возможные виды и обозначения сварных швов.
  3. ГОСТ 14771-76 “Швы сварных соединений, сварка в защитных газах”.

Чтобы разобраться с условными обозначениями сварочных способов в инженерных чертежах, нужно разобраться и с их видами. Предлагаем взглянуть на пример обозначения на чертеже:

Выглядит громоздко и устрашающе. Но мы не будем нервничать и не спеша во всем разберемся. В это длинной аббревиатуре есть четкая логика, начнем двигаться по этапам. Разобьем этого монстра на девять составных частей:

Теперь эти же составные элементы по квадратам:

  • Квадрат 1 – вспомогательные знаки для обозначения: замкнутая линия или монтажное соединение.
  • Квадрат 2 – стандарт, по которому приведены условные обозначения.
  • Квадрат 3 – обозначение буквой и цифрой типа соединения с его конструктивными элементами.
  • Квадрат 4 – способ сварки согласно стандарту.
  • Квадрат 5 – тип и размеры конструктивных элементов по стандарту.
  • Квадрат 6 – характеристика в виде длины непрерывного участка.
  • Квадрат 7 – характеристика соединения, вспомогательный знак.
  • Квадрат 8 – вспомогательный знак для описания соединения или его элементов.

А теперь разберём в деталях каждый элемент нашей длинной аббревиатуры.

В квадрате №1 находится кружок – одна из дополнительных характеристик, символ кругового соединения. Альтернативным символом является флажок, обозначающий монтажный вариант вместо кругового.

Специальная односторонняя стрелка показывает шовную линию. С этой стрелкой связана еще одна специфическая особенность сварочных чертежей. У этой стрелки с односторонним оперением есть симпатичная особенность под названием «полка». Полка играет роль настоящей полки – все условные обозначения могут располагаться на полке, если указано видимое соединение.

Или под полкой, если это шов невидимый и расположен с обратной стороны, т.е. с изнанки. Что считать лицевой стороной, а что изнанкой? Лицевая сторона одностороннего соединения – всегда та, с которой производится работа, это просто. А вот в двустороннем варианте с несимметричными кромками лицевой стороной будет та, где идет сварка основного соединения. А если кромки симметричные лицевой и изнанкой могут любые стороны.

А вот самые популярные вспомогательные знаки, используемые в чертежах со сваркой:

Разбираем квадраты №2 и 3, виды швов по ГОСТам

Вариантами соединений вплотную занимаются два стандарта: уже знакомый нам ГОСТ 14771-76 и знаменитый ГОСТ 5264-80 о .

Чем знаменит второй стандарт: он был написан много лет назад – в 1981 году, и это было сделано так грамотно, что этот документ отлично работает до сих пор.

Пример чертежа сварных швов по ГОСТ.

Виды сварочных соединений следующие:

С – стыковой шов. Свариваемые металлические поверхности соединяются смежными торцами, находятся на одной поверхности или в одной плоскости. Это один из самых распространенных вариантов, так как механические параметры стыковых конструкций очень высокие. Вместе с тем этот способ достаточно сложный с технической точки зрения, он по силам опытным мастерам.

Т – тавровый шов. Поверхность одной металлической заготовки соединяется с торцом другой заготовки. Это самая жесткая конструкция из всех возможных, но за счет этого тавровый способ не любит и не предназначен для нагрузок с изгибаниями.

Н – нахлесточный шов. Свариваемые поверхности параллельно смещены и немного перекрывают друг друга. Способ довольно прочный. Но нагрузки переносит меньше, чем стыковые варианты.

У – угловой шов. Плавление идет по торцам заготовок, поверхности деталей держат под углом друг к другу.

О – особые типы. Если способа нет в ГОСТе, в чертеже обозначается особый тип сварки.

Оба стандарта в рамках ЕКСД хорошо перекликаются друг с другом и справедливо делят ответственность по видам:

Варианты изображения сварных швов на чертежах.

Соединения ручного дугового способа по ГОСТу 5264-80:

  • С1 – С40 стыковые
  • Т1 – Т9 тавровые
  • Н1 – Н2 нахлесточные
  • У1 – У10 угловые

Соединения сварки в защитных газах по ГОСТу 14771-76:

  • С1 – С27 стыковые
  • Т1 – Т10 тавровые
  • Н1 – Н4 нахлесточные
  • У1 – У10 угловые

В нашей аббревиатуре во втором квадрате указан ГОСТ 14771-76, а в третьем Т3 – тавровый способ без скоса кромок двусторонний, который как раз указан в этом стандарте.

Квадрат №4, способы сварки

Как обозначаются различные виды швов.

Также в стандартах присутствуют обозначения способов сварки, вот примеры самых распространенных из них:

  • A – автоматическая под флюсом без подушек и подкладок;
  • Aф – автоматическая под флюсом на подушке;
  • ИH – в инертном газе вольфрамовым электродом без присадки;
  • ИHп – способ в инертном газе с вольфрамовым электродом, но уже с присадкой;
  • ИП – способ в инертном газе с плавящимся электродом;
  • УП – то же самое, но в углекислом газе.

У нас в квадрате №4 указано обозначение сварки УП – это способ в углекислом газе с плавящимся электродом.

Квадрат №5, размеры шва

Это обязательные размеры шва. Удобнее всего обозначить длину катета, так как речь идет о тавровом варианте с перпендикулярным объединением под прямым углом. Катет определяют в зависимости от предела текучести.

Надо заметить, что, если на чертеже указано соединение стандартных размеров, длина катета не указывается. В нашем чертежном обозначении катет равен 6-ти мм.

Классификация сварных швов.

Дополнительно соединения бывают:

  • SS односторонними, для которых дуга или передвигаются с одной стороны.
  • BS двусторонними, источник плавления передвигается с обеих сторон.

В дело вступает третий участник нашей чертежно-сварочной тусовки – ГОСТ 2.312-72, как раз посвященный изображениям и обозначениям.

Согласно этому стандарту швы подразделяются на:

  • Видимые, которые изображаются сплошной линией.
  • Невидимые, обозначаемые на чертежах пунктирной линией.

Теперь вернемся к нашему первоначальному шву. Нам по силам перевести это условное обозначение сварки в простой и понятный для человеческого уха текст:

Двусторонний тавровый шов методом ручной дуговой сварки в защитном углекислом газе с кромками без скосов, прерывистый с шахматным расположением, катет шва 6 мм, длина провариваемого участка 50 мм, шаг 100 мм, выпуклости шва снять после сварки.

Конденсаторная сварка является одним из видов контактной сварки, которую активно используют в промышленности, а также для выполнения сварных операций своими руками в быту.

Технологическая схема операции следующая: в конденсаторах при их зарядке от выпрямителя осуществляется накопление энергии, которая при разряде трансформируется в тепловую энергию.

С помощью этой энергии и осуществляется соединение кромок металлических изделий. Расскажем, как выполнить конденсаторную сварку своими руками: схема и описание технологии.

Конденсаторная своими руками была разработана еще в 30-х годах XX века. Сегодня эта технология активно используется предприятиями промышленности и умельцами с целью выполнения бытовых сварных операций.

Особенно популярна такая технология в цехах ремонта кузовов транспортных средств: в отличие от дугового, при конденсаторном методе создания сварного шва не происходит прожигание и деформация тонких стенок листов кузовных деталей. В последующее время соединенным деталям кузова не нужна дополнительная рихтовка.

Такую технологию применяют в радиоэлектронике для соединения изделий, не паяющихся посредством обычных флюсов или выходящих из строя при перегреве.

Активно применяются аппараты конденсаторной сварки ювелирами при изготовлении и ремонте ювелирных украшений, на предприятиях, выпускающих коммуникационные шкафы, лабораторное, медицинское, пищевое оборудование, при строительстве зданий, мостов, инженерных коммуникаций.

Столь широкое распространение можно объяснить действием ряда факторов:

  • простая конструкция сварочного аппарата, который при желании можно собрать своими руками;
  • точечная сварка отличается относительно низкой энергоемкостью и малыми нагрузками, создаваемыми на электрическую сеть;
  • высокие показатели производительности, что крайне важно при серийном производстве;
  • возможность снизить термическое влияние на соединяемые поверхности, что позволяет сваривать детали малых размеров и работать с теми конструкциями, стенки которых чрезмерно тонки и могут деформироваться при обычной сварке.

На заметку! Достоинством технологии конденсаторной сварки является простота ее реализации: даже средний уровень квалификации позволяет мастеру создать качественные сварные швы.

Способ конденсаторной сварки изделия.

Правила осуществления сварных операций с помощью энергии конденсаторов регламентируются ГОСТ. Принцип технологии основывается на трансформации энергии электрического заряда, накопленного на конденсаторах, в тепловую энергию.

При соприкосновении электродов происходит разряд и образуется электрическая дуга краткого действия. За счёт выделяемого ею тепла кромки соединяемых деталей из металла плавятся, образуя сварной шов.

При конденсаторной сварке ток подается на сварной электрод в виде кратковременного импульса высокой мощности, который получается за счет монтажа в оборудование конденсаторов большой емкости.

В случае использования контактной сварки ток непрерывен. В этом заключается основное отличие этих видов выполнения сварных операций.

В итоге, мастер может достичь высоких показателей двух важных параметров:

  • на термический нагрев соединяемых деталей требуется гораздо меньше времени, что особенно ценно для производителей электронных компонентов;
  • ток, используемый для соединения деталей, обладает высокой мощностью, поэтому и сами сварные швы получаются более качественными.

В процессе сварных операций для крепления элементов и узлов разных изделий могут потребоваться разные по разновидности и назначению шпильки.

Достоинством конденсаторной сварки является возможность уменьшить площадь термического воздействия, снизить напряжение и свести к нулю риск деформации поверхностей ввиду высокой плотности энергии и кратковременности сварного импульса. Технология позволяет работать с цветными металлами с малой толщиной.

Также отметим, что огромным плюсом конденсаторного сварного аппарата является его компактность. Для применения такой технологии на практике не потребуется мощный источник питания, устройство можно заряжать между переносом электрода к следующей точке.

Выполняем конденсаторную сварку своими руками

Контактная сварка применяется сварщиками, поэтому купить заводской аппарат для ее выполнения несложно.

Модели, в отличие от агрегатов для точечной сварки, отличаются простой конструкцией, несложным управлением и стоят недорого, но многие умельцы все же принимают решение, собрать сварной аппарат конденсаторного типа своими руками. Это позволяет сэкономить деньги, реализовать собственный талант.

Температура сварки различных материалов.

Выполнения данного задания требует от мастера следующего:

  • найти в интернете нужную схему и подробное описание конструкционных особенностей агрегата;
  • уяснить механизм работы устройства;
  • подобрать актуальные материалы и приспособления: шпильки приварные, сварные электроды и т.п.

Механизм функционирования аппарата для конденсаторной сварки:

  • ток направляется через первичную обмотку питающего трансформатора, выпрямитель, представленный диодным мостом;
  • на диагонали моста осуществляется подача управляющего сигнала тиристора с кнопкой запуска;
  • в цепи тиристора вставлен конденсатор для накопления сварного импульса, который также нужно подключить к диагонали выпрямителя и первичной обмотке трансформаторной катушки.

Соединение участков металлических конструкций осуществляется при сильном электрическом влиянии, накопленном в двухполюсниках, а сам процесс делится на три категории:

  1. Контактная сварка.
    Предполагает плотное прижатие заготовок друг к другу с последующим соприкосновением электродов к данному месту. Энергия, подающаяся на ограниченное пространство настолько велика, что это приводит к быстрому расплавлению и дальнейшему прикреплению кромок деталей.
  2. Ударная технология.
    Также предполагает соединение отдельных деталей из металла в единую конструкцию, но электричество подается к месту сваривания в виде кратковременного удара. Такая технология позволяет уменьшить продолжительность сварной операции до 1,5 м/с;
  3. Точечная техника.
    При использовании такого вида сварки потребуется два медных контакта, касающиеся объекта с двух граней. В результате изделия скрепляются в точке прикосновения к электроду.

При необходимости навесить на тонколистовую металлическую конструкцию приборы, фиксируемые гайками, можно воспользоваться той же конденсаторной сваркой.

С ее помощью на стенку конструкции приваривается специальная шпилька для конденсаторной сварки, а уже на нее фиксируют прибор. Шпильку помещают напротив основного металла и настраивают оборудование для выполнения операции приварки.

Дуга плавит основание шпильки и соответствующую ему площадь основного металла, после чего изделие вводят в сварную ванну и фиксируют на поверхности до тех пор, пока металлы не остынут. На выполнение такого потребуются миллисекунды, но он будет надежен и долговечен.

Схема при конденсаторной сварке

Схема конденсаторной сварки.

Конденсаторная точечная сварка своими руками легко выполняется даже малоопытным сварщиком.

Ее основа ‒ электрическая схема с применением конденсаторов:

  1. Первичная обмотка проводится через выпрямитель, представленный .
    Затем она подключается к источнику напряжения.
  2. Тиристор подает сигнал на мостовую диагональ и управляется кнопкой запуска.
    Конденсатор подключается к сети тиристора, диодному мосту и выводится на первичную обмотку.
  3. Зарядить конденсатор можно путем, включения вспомогательной цепи с выпрямителем и трансформатором.

Конденсаторная сварка аккумуляторов своими руками осуществляется в следующей последовательности действий со стороны мастера:

  • нажатие пусковой кнопки, запускающей временное реле;
  • включение трансформатора при помощи тиристоров, после реле отключается;
  • использование резистора с целью определения длительности импульса.

Требования к конденсаторной сварке

Сварные конденсаторы применяются в промышленном масштабе и в условиях небольших мастерских. В любом варианте нельзя нарушать технологию сварки для аккумуляторов своими руками, иначе сварные швы получаться низкокачественными.

Электрическая схема конденсаторной сварки.

Соблюдение следующих условий позволит получить действительно качественный результат работы:

  • обеспечьте подачу кратковременного импульса в течение временного промежутка до 0,1 с, а также последующее накопление энергозаряда от источника питания для нового импульса за максимально краткое время;
  • позаботьтесь о хорошем контакте свариваемых деталей путем достаточного давления электрода на детали в момент подачи сварочного импульса;
  • разжимание электродов производите с задержкой, дабы расплав остывал под давлением и улучшался режим кристаллизации металла сварного шва;
  • диаметр точки, образуемой на металле от контакта с электродом, должен быть крупнее, нежели самая тонкая свариваемая заготовка в 2 раза;
  • тщательно очистите поверхность свариваемых заготовок перед сваркой, дабы окисные пленки и ржавчина не спровоцировали существенное сопротивление для тока.

На заметку! Наиболее удачный вариант электродов для конденсаторной сварки – это омедненная проволока.

Конденсаторную точечную сварку осуществлять своими руками можно только при условии сборки агрегата с минимум двумя блоками: источником сварного импульса и сварочного блока. Также крайне важно предусмотреть возможность регулировки режима сварки и защиты.

Особенно важно придерживаться правил безопасной со сварным аппаратом, которые предполагают следующие пункты:

  • для защиты глаз от искр от сварного аппарата надевают специальную маску;
  • обезопасить кожу рук от ожога помогут перчатки, а тело – специальный защитный комбинезон;
  • на ноги сварщика надевают ботинки с подошвой из плотного материала, не позволяющего повредить пальцы и ступню при работе.

Конструкции контактного блока

Контактный блок конденсаторной сварки ответственен за фиксацию и перемещение сварных . В большинстве случаев фиксация обоих стержней осуществляется вручную.

Схема конденсаторной сварки ударного типа.

Более качественный вариант обеспечивает надежную фиксацию нижнего стержня, но оставляет подвижным верхний стержень. В данном случае верхний медный прут закрепляется так, чтобы он свободно двигался в вертикальной плоскости. А нижний ‒ оставляют в неподвижном состоянии.

Также на верхней части монтируют регулятор винтового образца, позволяющий создавать дополнительное давление. Главное, чтобы верхняя площадка и основание энергоблока имели хорошую изоляцию друг от друга. Некоторые модели сверху оснащены фонарем, что делает работу более комфортной.

При конструировании конденсаторной сварки своими руками потребуется иметь следующие детали:

  • конденсатор, емкостью 1000-2000 мкФ, мощностью 10 В, напряжением 15;
  • трансформатор требуемого размера ‒ 7 см, произведенный из сердечника типа Ш40;
  • первичная обмотка, сделанная из трехсот слоев провода с диаметром 8 мм;
  • вторичная обмотка из десяти обмоток медной шины;
  • пусковик серии МТТ4К, включающий параллельные тиристоры, диоды и резистор.

На заметку! Если работа потребует соединения заготовок до 0,5 см, понадобится применить дополнительные коррективы в схему конструкции.

Особенности работы самодельного агрегата

Осуществить ударную конденсаторную сварку можно с помощью специального аппарата заводского производства, который продается в специализированных магазинах. Однако, вполне реально изготовить сварку конденсаторного типа самостоятельно в условиях маленькой мастерской.

Изготовленные своими силами агрегаты демонстрируют высокие эксплуатационные параметры и в работе не уступают заводским моделям.

Самодельный аппарат конденсаторной сварки.

Перед работой самодельному аппарату для сварки, использующему энергию конденсаторов, задают основные параметры функционирования:

  • напряжение в зоне металлоизделий;
  • вид и сила тока;
  • длительность действия сварного импульса;
  • число и размеры сварной проволоки, применяемой в работе.

Платы управления, присутствующие в конструкции и заводских, и самодельных сварочных агрегатов, предоставляют мастеру возможность привести поступающее напряжение и постоянную величину тока к стабильному значению. Самодельный агрегат важно оснастить переключателем для выполнения сварки электродами без особенных трудностей.

Самодельные агрегаты, как и заводские модели, долговечны, просты в использовании, если при их конструировании придерживаться схемы, технологических требований и норм безопасности.

А технические параметры изготовленной своими силами модели должны соответствовать характеристикам заводских конструкций. Тогда аппарат позволит даже малоопытному сварщику выполнять надежные и долговечные сварные швы методом конденсаторной сварки.

Но не стоит забывать, что весомая доля успеха при выполнении сварочных операций зависит от тщательности подготовительных работ. Обязательно позаботьтесь о том, чтобы свариваемые поверхности не имели загрязнений, слоя пыли, ржавчины перед началом работы.

Такие дефекты могут свести на нет усилия сварщика, став преградой для качественного соединения расплавленных кромок изделий.

Подведем итоги

Конденсаторная сварка актуальна при необходимости соединить детали из цветных металлов в единую конструкцию.

Технология имеет ряд достоинств, среди которых особенно ценна возможность уменьшить площадь термовоздействия, снизить напряжение и устранить риск деформации металлоповерхностей. Аппараты для конденсаторной сварки просты в использовании и легко собираются своими руками, что позволяет сэкономить.

государственный стандарт

СОЮЗА ССР

КОНСТРУКТИВНЫЕ ЭЛЕМЕНТЫ И РАЗМЕРЫ

ГОСТ 15878-79

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ

УДК 621.791.76.052:006,354 ГОСУДАРСТВЕННЫЙ

СТАНДАРТ СОЮЗА ССР

КОНТАКТНАЯ СВАРКА. СОЕДИНЕНИЯ СВАРНЫЕ

Конструктивные элементы и размеры

Resistance welding. Welded joints.

Design elements and dimensions

ГОСТ 15873-70

Постановлением Государственного комитета СССР по стандартам от 28 мая 1979 г. № 1926 срок действия установлен

1. Настоящий стандарт устанавливает конструктивные элементы и размеры расчетных сварных соединений из сталей, сплавов на железоникелевой и никелевой основах, титановых, алюминиевых, магниевых л медных сплавов, выполняемых контактной точечной, рельефной и шовной сваркой.

Стандарт не распространяется на сварные соединения, выполняемые контактной сваркой без расплавления металла.

2. В стандарте приняты следующие обозначения способов контактной сварки:

/С т - точечная;

Кр -рельефная;

К ш - шовная.

Для конструктивных элементов сварных соединений приняты следующие обозначения:

s и 51-толщина детали;

d - расчетный диаметр литого ядра точки или ширина литой зоны шва;

h и hi - величина проплавления;

g и g\ - глубина вмятины;

t - расстояние между центрами соседних точек в ряду;

с- расстояние между осями соседних рядов точек при цепном расположении;

С\ - расстояние между осями соседних рядов точек при шахматном расположении;

Издание официальное Перепечатка воспрещена

с 01.07. 1980 г. до 01.07. 1985 г.

Несоблюдение стандарта преследуется по закону

(§) Издательство стандартов, 1979

I - длина литой зоны шва;

f ~ величина перекрытия литых зон шва;

1\ - длина неперекрытой части лигой зоны шва;

В - величина нахлестки;

и - расстояние от центра точки или оси шва до края нахлестки;

п - число рядов точек.

3. Конструктивные элементы сварных соединений, их размеры должны соответствовать указанным на черт. 1, 2, 3 и в табл. 1, 3, 5 для соединений группы Айв табл. 2, 4, 6^ для соединений группы Б.

Группа соединения должна быть установлена при проектировании в зависимости от требований к сварной конструкции и особен-ноет ей технологического процесса сварки.

4. Величина нахлестки В для многорядных швов при цепном расположении точек В~2и + с (п-1); при шахматном расположении точек В = 2и + С\ (п-1).

5. В зависимости от вида нахлестки сварного соединения величину нахлестки В следует определять в соответствии с черт. 4.

6. Расстояние от центра точки или оси шва до края нахлестки и должно быть не менее половины минимальной величины нахлестки.

7. Допускается сварка деталей неодинаковой толщины; при этом размеры конструктивных элементов следует выбирать по детали меньшей толщины.

В случае - >2 минимальные величины нахлестки В у расстоя-

ние между центрами соседних точек в ряду t и расстояние между осями соседних рядов точек с следует увеличить в 1,2-1,3 раза.

8. При сварке трех и более деталей расчетный диаметр литого ядра точки d следует устанавливать раздельно для каждой пары сопрягаемых деталей. Допускается сквозное проплавление средних деталей.

9. Величина проплавления h y hi должна быть для магниевых сплавов от 20 до 70%, титановых---от 20 до 95% и остальных металлов и сплавов - от 20 до 80% толщины деталей.

10. При шовной контактной сварке величина перекрытия литых зон герметичного шва / должна быть не менее 25% длины литой зоны шва L

При шовной контактной сварке деталей толщиной менее 0,6 мм допускается уменьшение величины перекрытия литых зон шва до значений, гарантирующих герметичность сварного шва.

11. Глубина вмятины g y gi не должна быть более 20% толщины

детали. При сварке деталей с отношением - >2, в случае при-менения одного из электродов с увеличенной плоской рабочей по-

верхностью, а также при сварке в труднодоступных местах допускается увеличение глубины вмятины до 30% толщины детали.

Конструктивные элементы сварных соединений,

выполненных контактной точечной сваркой





а-неллакированные металлы; б - плакированные металлы; в -детали неравной толщины; 2 - разноименные металлы

Конструктивные элементы сварных соединений, выполненных контактной рельефной сваркой



Ппспе сдарки

Конструктивные элементы сварных соединений, выполненных контактной шовной сваркой



Однорядный ш<

эв В, не менее

не м ен ее

Св. 0,3 до 0,4

Св. 0,4 до 0,6

Св. 0,6 до 0,7

Св. 0,7 до 0,8

Св. 0,8 до 1,0

Св. 1,0 до 1,3

Св. 1,3 до 1,6

Св. 1,6 до 1,8

Св. 1,8 до 2,2

Св. 2,2 до 2,7

Св. 2,7 до 3,2

Св 3,2 до 3,7

Св. 3,7 до 4,2

Св. 4,2 до 4,7

Св. 4,7 до 5,2

Св. 5,2 до 5,7

Св. 5,7 до 6,0

соединения

Однорядный шов В, не менее

Стали, сплавы на железоникелевой и никелевой основах, титановые сплавы

Алюминиевые, магниевые и медные сплавы

Св. 0.3 до 0,4

Св. 0,4 до 0,5

Св. 0,5 до 0,6

Св. 0,6 до 0,8

Св. 0,8 до 1,0

Св. 1.0 до 1,3

Св 1,3 до 1,6

Св. 1,6 до 1,8

Св. 1,8 до 2,2

Св. 2,2 до 2,7

Св. 2,7 до 3,2

Примечание. Допускается уменьшение размеров t и с, при этом размер d должен соответствовать указанным в таблице.

Гр уппа соединения

d, не менее

Однорядный шов В, не менее

Св, 0,3 до 0,4

Св. 0,4 до 0,6

Св, 0,6 до 0,7

Св, 0,7 до 0,8

Св 0,8 до 1,0

Св. 1,0 до 1,3

Св. 1,3 до 1,6

Св. 1,6 до 1,8

Св. 1,8 до 2,2

Св. 2,2 до 2,7

Продолжение табл. 3

соединения

d, не менее

Однорядный шов В, не менее

Св. 2,7 до 3,2

Св. 3,2 до 3,7

Св. 3,7 до 4,2

Св 4,2 до 4,7

Св. 4,7 до 5,2

Св. 5,2 до 5,7

Св. 5,7 до 6,0

Таблица 4

Г руппа соединения

Однорядный шов В, d, не менее Н е ыен ее

Св. 0,3 до 0,4

Св 0,4 до 0.5

Св. 0,5 до 0,6

Св. 0,6 до 0,8

Св. 0,8 до 1,0

Св. 1,0 до 1,3

Св. 1,3 до 1,6

Св. 1,6 до 1,8

Св. ] ,8 до 2,2

Св. 2,2 до 2,7

Св. 2,7 до 3,2

Св. 3,2 до 3,7

Св. 3,7 до 4,2

Св. 4,2 до 4,7

Св. 4,7 до 5,2

Св. 5,2 до 5,7

Св. 5,7 до 6,0

Однорядный шов В, не менее

Способ сварки

d, не менее

Стали, сплавы на железоникелевой и никелевой основах, титановые сплавы

Алюминиевые, магниевые и медные сплавы

Св. 0,3 до 0,4

Св. 0,4 до 0,6

Св 0,6 до 0,8

Св 0,8 до 1,0

Со 1,0 до 1,3

("в 1,3 до 1,6

г:в 1,6 до 1,8

Св. 1,8 до 2,2

Св. 2,2 до 2,7

Св. 2,7 до 3,2

Св. 3,2 до 3,7

Св. 3,7 до 4,0

Таблица 6

Однорядный шов В, не менее

Способ сварки

Группа соединения

d, не менее

Стали, сплавы на железоникелевой и никелевой основах, титановые сплавы

Алюминиевые, магниевые и медные сплавы

Св. 0,3 до 0,4

Св. 0,4 до 0,5

Св. 0,5 до 0,6

Св 0,6 до 0,8

Св. 0,8 до 1,0

Продолжение табл. 6

Способ сварки

Группа соединения

d, не менее

Однорядный шов В, не менее

Стали, сплавы на железоникелевой и никелевой основах, титановые сплавы

Алюминиевые, магниевые и медные сплавы

Св. 1,0 до 1,3

Св. 1,3 до 1,6

Св. 1,6 до 1,8

Св. 1,8 до 2,2

Св, 2,2 до 2,7

Св. 2,7 до 3,2

Виды нахлестки сварных соединений, выполняемых контактной точечной рельефной и шовной сваркой


Редактор И. В. Виноградская Технический редактор В. Ю. Смирнова Корректор Е. И. Евтеева

Сдано в набор 21.06.79 Подп. в печ. 10.08.79 0,75 п. л. 0,57 уч. -изд. л. Тир. 30000 Цена 3 коп.

Ордена «Знак Почета» Издательство стандартов. Москва, Д-557, Новопресненский пер., 3. Калужская типография стандартов, ул. Московская, 256. Зак. 1727

Поделитесь с друзьями или сохраните для себя:

Загрузка...