Прогнозирование надежности машин методом экспертных оценок. Прогнозирование надежности

Случайное событие, приводящее к полной или частичной утрате работоспособности изделия, называется отказом.

Отказы по характеру изменения параметров аппаратуры до момента их возникновения подразделяют на постепенные и внезапные (катастрофические). Постепенные отказы характеризуются достаточно плавным временным изменением одного или нескольких параметров, внезапные – их скачкообразным изменением. По повторяемости возникновения отказы бывают одноразовые (сбои) и перемежающиеся.

Сбой – однократно возникающий самоустраняющийся отказ, перемежающийся отказ – многократно возникающий сбой одного и того же характера.

В зависимости от причины возникновения отказы делятся на устойчивые и самоустраняющиеся. Устойчивый отказ устраняется заменой отказавшего компонента, а самоустраняющийся исчезает сам, но может повториться. Самоустраняющийся отказ может проявиться в виде сбоя или в форме перемежающегося отказа.

Возникновение отказов происходит как из-за внутренних свойств аппаратуры, так и из-за внешних воздействий и носит случайный характер. Для количественной оценки отказов используют вероятностные методы теории случайных процессов.

Безотказность – свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени. Способность изделия непрерывно сохранять заданные функции в течение установленного в технической документации времени характеризуется вероятностью безотказной работы, интенсивностью отказов и средней наработкой между отказами. Безотказность изделия (например, ячейки) в свою очередь определяется значениями интенсивности отказов компонентов λi, входящих в его состав.

Теория оценки надежности методологически позволяет увидеть и "оправдать" существовавшие ранее конкретные модели оценки надежности, в частности компонентов, а также предвидеть степень их полноты, достаточности и адекватности для решения практических задач надежности.

Исследователи отказов компонентов использовали принцип каузальности (причинности) и для объяснения процессов деградации, приводящих к отказам, применяли знания из физики, химии, термодинамики и материаловедения. В результате появились синтетические термины и понятия – "механизм отказа", "энергия активации процесса деградации", составляющие основу физических методов анализа (физика надежности, физика старения, физика отказов), положенных в основу разработок моделей оценки показателей надежности с целью прогнозирования надежности компонентов. Такие модели широко используются в практической работе при анализе и оценке надежности изделий, в том числе компонентов МЭА, и приведены в официальных стандартах и каталогах микросхем, являющихся главным видом изделий элементной базы современных технических объектов. Поэтому знание этих моделей полезно для правильного инженерного применения.

Для того чтобы дать представление о природе процессов деградации в изделиях, вначале покажем, каким образом можно применить концепции химического равновесия, статистической механики и теории абсолютных скоростей реакций к системе, состоящей из многих частиц. Это позволит далее ввести как эмпирическую модель оценки скоростей реакции Аррениуса, так и более общую модель Эйринга.

Под механизмами отказов понимаются микроскопические процессы изменений, ведущие к отказу изделия. Механизм отказа представляет теоретическую модель, призванную объяснить на атомном и молекулярном уровнях внешние проявления отказа изделия. Эти внешние проявления обусловливаются видом отказов и представляют собой конкретные, физически измеримые состояния изделия.

Модель механизма отказов обычно является в большой мере идеализированной. Однако она позволяет предсказать взаимозависимости, что приводит к лучшему пониманию рассматриваемого явления, хотя количественные результаты зависят от конкретных компонентов, состава и конфигурации изделия.

Механизмы отказов могут иметь физическую и (или) химическую природу. На практике разделить механизмы отказов затруднительно. Поэтому зачастую в процессе анализа сложный ряд механизмов рассматривают как единый обобщенный механизм отказов. Как правило, особый интерес представляет какой-то один механизм из ряда действующих одновременно, который определяет скорость протекания процесса деградации и сам развивается наиболее быстро.

Механизмы отказов могут быть представлены либо непрерывными функциями времени, которые обычно характеризуют процессы старения и износа, либо скачкообразными функциями, отражающими наличие множества невыявленных дефектов или качественно слабых мест.

Первая группа механизмов обусловлена тонкими дефектами, приводящими к дрейфу параметров компонентов за пределы допусков, и характерна для большинства компонентов; вторая группа механизмов проявляется в небольшом числе компонентов и обусловлена грубыми дефектами, от которых избавляются посредством технологических отбраковочных испытаний (ТОИ).

Даже самый простой компонент изделия (в том числе ИМНЭ) является многокомпонентной гетерогенной системой, многофазной, имеющей граничные области между фазами. Для описания такой системы используют либо феноменологический, либо молекулярно-кинетический подход.

Феноменологический подход – чисто эмпирический, описывающий состояние системы на основании измеримых макроскопических параметров. Например, для транзистора по результатам измерений дрейфа во времени тока утечки и напряжения пробоя в определенные моменты времени устанавливается взаимосвязь этих параметров, на базе которой осуществляется прогнозирование свойств и состояний транзистора как системы. Однако эти параметры являются усредненными по множеству микроскопических характеристик, что снижает их чувствительность как индикаторов механизмов деградации.

Молекулярно-кинетический подход преимущественно связывает макроскопические свойства системы с описанием ее молекулярной структуры. В системе из многих частиц (атомов и молекул) их перемещения можно описать на основе законов классической и квантовой механики. Однако вследствие необходимости учета большого числа взаимодействующих частиц задача весьма объемна и трудна для решения. Поэтому молекулярно-кинетический подход также остается чисто эмпирическим.

Интерес к кинетике деградации компонентов ведет к анализу того, как протекают превращения (переходы) одного равновесного состояния в другое с учетом природы и скорости превращений. При таком анализе возникают некоторые трудности.

Работа компонентов зависит главным образом от таких необратимых явлений, как электро- и теплопроводность, т.е. определяется неравновесными процессами, для исследования зависимости которых приходится прибегать к методам аппроксимации, поскольку компоненты являются многокомпонентными системами, состоящими из ряда фаз вещества. Наличие множества неравновесных факторов может при определенных условиях влиять на природу и скорость изменения равновесных состояний системы. Следовательно, необходимо учитывать не только комбинации механизмов, способных меняться в зависимости от времени и нагрузки, но и изменения во времени самих механизмов.

Несмотря на эти сложности, можно сформулировать общую концепцию рассмотрения и анализа, исходя из того, что в технологии компонентов на основании контроля их параметров и результатов некоторого периода испытаний принято решать, какие из данного множества компонентов являются годными для конкретного применения. Процесс отбраковки осуществляется на протяжении всего производственного цикла: от материалов до испытаний готовых изделий.

Таким образом, остается только понять механизм эволюции готового компонента от состояния "годен" до состояния "брак". Опыт свидетельствует, что такое превращение требует преодоления определенного энергетического барьера, схематически показанного на рис. 5.13 .

Рис. 5.13.

р 1, р, р 2 уровни энергии, характеризующие нормальное, активированное и отказовое состояния системы; Е a – энергия активации; δ – пространство неустойчивости системы; А, В, С – взаимодействующие частицы системы

Минимальный уровень энергии, необходимый для перехода из состояния p 1 в состояние р, называется энергией активации Е а процесса, которая может иметь механическую, тепловую, химическую, электрическую, магнитную или другую природу. В полупроводниковых твердотельных изделиях – это зачастую тепловая энергия.

Если состояние р 1 является минимально возможным уровнем энергии данной системы, а компонент соответствует состоянию "годен", то состояние р соответствует неустойчивому равновесию системы, а компонент – предотказовому состоянию; р 2 отвечает состоянию "отказ" компонента.

Рассмотрим случай, когда имеется один механизм отказа. Состояние системы (хорошее или плохое) можно охарактеризовать рядом измеримых макроскопических параметров. Изменение, или дрейф этих параметров можно регистрировать как функцию времени и нагрузки. Однако необходимо убедиться в том, что принятая группа макропараметров не отражает частный случай микросостояния системы (плохой или хороший). Признаком частного случая является отсутствие двух идентичных изделий с точки зрения их микросостояния. Тогда скорость деградации будет для них неодинакова, а сами механизмы могут оказаться различными в какой-то заданный промежуток времени, а значит, и технологические отбраковочные испытания (ТОИ) будут неэффективными. При идентичности микросостояний компонентов статистика отказов после их испытаний будет идентичной.

Рассмотрим анализ процессов деградации. В простой системе, состоящей из многих частиц, рассмотрим некоторое ограниченное число частиц, активно участвующих в процессе деградации, ведущем к деградации параметров компонента. Во многих случаях степень деградации пропорциональна числу активированных частиц.

Например, может происходить диссоциация молекул на составляющие их атомы или ионы. Скорость этого процесса (химической диссоциации) будет зависеть от числа диссоциирующих частиц и от их средней скорости прохождения через энергетический барьер.

Допустим, что имеем измеримый параметр П. Свойства изделия или некая функция параметра f (П) изменяется пропорционально скорости химической диссоциации каких-то веществ, входящих в состав материалов изделия, а сама диссоциация является главным механизмом деградации, приводящим к отказу изделия. В этом случае скорость изменения П или f (П) во времени t можно выразить следующим образом:

где N a число частиц, достигших уровня энергии, достаточного для преодоления энергетического барьера;– средняя скорость движения активированных частиц через барьер;– коэффициент прозрачности барьера (он меньше единицы, так как часть активных частиц скатывается обратно с энергетической вершины барьера).

Задача определения N a из общего числа частиц в системе может быть решена при следующих допущениях:

  • 1) только небольшая часть всех частиц системы всегда обладает энергией, необходимой для активации процесса деградации;
  • 2) существует равновесие между числом активированных частиц и числом остальных частиц системы, т.е. скорость возникновения (рождения) активированных частиц равна скорости их исчезновения (гибели):

Задачи рассматриваемого типа являются предметом исследования статистической механики и связаны со статистиками Максвелла – Больцмана, Ферми – Дирака, Бозэ – Эйнштейна.

Если применить классическую статистику Максвелла Больцмана, используемую как удовлетворительную аппроксимацию для частиц всех типов (все частицы различимы), то число частиц, которое будет находиться на одном и том же энергетическом уровне в равновесной системе из многих частиц, опишется следующим образом:

где Е a энергия активации; k – постоянная Больцмана; Т – абсолютная температура.

В процессе многолетних исследований кинетики реакций эмпирическим путем было установлено, что в большинстве химических реакций и некоторых физических процессах имеет место аналогичная зависимость их скорости реакции от температуры и убыли

(убывания) исходной концентрации вещества С, т.е.

Другими словами, для термически активируемых химических реакций справедливо уравнение Аррениуса. Запишем его с учетом квантовомеханических поправок:

где А – коэффициент пропорциональности.

Большинство ускоренных испытаний компонентов основано на использовании уравнения Аррениуса, которое широко применяется, хотя зачастую и не обеспечивая вполне необходимую точность, для анализа процессов деградации изделий и прогнозирования их надежности.

Применительно к изделиям электроники самым ранним было его использование в исследовании нарушений (неисправностей) электрической изоляции.

Множитель А должен быть рассчитан с учетом:

  • средней скорости преодоления частицами энергетического барьера;
  • общего числа имеющихся (участвующих в процессе) частиц;
  • функции распределения частиц по энергиям в системе.

где f * и f n – функции распределения активированных и нормальных частиц; δ – длина пути реакции; С n – концентрация нормальных частиц.

С учетом поступательной, вращательной и вибрационной энергий частиц последнее выражение записывается в виде, пригодном для использования в физике отказов:

где ; k – постоянная Больцмана; h – постоянная

Планка; Т – температура; – соответственно энергия активации, стандартная энергия активации Гиббса, энтропия и энтальпия активации, универсальная газовая постоянная.

Важность уменьшения энтропии в системе, состоящей из многих частиц, заключается в замедлении скорости деградации параметра изделия в связи с возрастанием упорядоченности системы. Это означает увеличение времени наработки на отказ, что можно показать, проинтегрировав последние уравнения:

Выражение для времени достижения компонентом отказового состояния t f от номинально-допустимого значения электрического параметра П0 до отказового Пf после интегрирования, подстановки пределов и логарифмирования примет вид

где ; коэффициент А" определяется в процессе испытаний на надежность и отражает предотказовое (т.е. энергетически активированное) состояние компонента.

Если под временем t f понимать среднюю наработку на отказ, то для экспоненциального закона распределения интенсивность отказов λ можно определить следующим образом:

Рассмотренный подход позволяет при теоретическом анализе надежности компонентов делать только качественные и полуколичественные выводы как вследствие многофазности и гетерогенности многокомпонентной надсистемы, частью которой является компонент (и даже элемент компонента), так и из-за вида временны́х экспериментальных моделей деградации компонентов. Это очевидно из сводки причин, механизмов и физико-математических моделей отказов компонентов ИС, представленной в табл. 5.20 (временны́е модели не всегда следуют логарифмической зависимости; на практике могут быть и степенны́е зависимости).

Достоинство подхода, основанного на использовании уравнения Аррениуса, состоит в возможности прогнозирования параметрических отказов изделий на основе ускоренных испытаний. Недостатком такого подхода является отсутствие учета конструкторско-технологических параметров элементов и компонентов.

Таким образом, подход Аррениуса базируется на эмпирической связи электрического параметра компонента или элемента и механизма отказа с энергией активации Еа. Этот недостаток преодолен теорией Г. Эйринга, который ввел понятие активированного комплекса частиц и методами статистической и квантовой механики нашел его обоснование. Однако в его теории не учитываются достижения российской термодинамической школы материаловедов, творчески переработавших идеи Д. Гиббса.

Тем не менее подход Аррениуса – Эйринга Гиббса активно применяется для решения вопросов надежности при допущении температурной зависимости механизмов отказов и является основой различных моделей, служащих для нахождения интенсивностей отказов ИЭТ, приведенных в справочной литературе, руководствах и базах данных программ расчета показателей надежности.

В теории Эйринга не учитываются достижения российской термодинамической школы материаловедов, творчески освоивших и переработавших идеи Д. Гиббса, не очень почитаемого в Америке, но любимого в России и на просторах бывшего СССР. Известно, например, что В. К. Семенченко на основе обобщенных функций, связанных с уравнениями Пфаффа (1815 г. – так называемая пфаффова форма) предложил свой подход (свою С-модель) и модифицировал фундаментальное уравнения Д. Гиббса.

Таблица 5.20

Причины, характерные механизмы и модели отказов компонентов и их элементов

Параметр (показатель) надежности

Причина (механизм) отказов

Модель отказов

Значение энергии активации Е a, эВ

Физико-химическая система

Время самопроизвольного выхода из устойчивого состояния τ

Процессы деградации

Герметизирующие покрытия (полимеры)

Средняя наработка на отказ tr

Деструкция (процессы сорбции, десорбции, миграции)

Поверхность полупроводника /7-типа

Поверхностная концентрация ионов n s

Инверсия, электромиграция

Алюминий массивный (объемный)

Средняя наработка на отказ t f

Термомеханические напряжения

Металлизация (пленочная)

Средняя наработка на отказ t f

Электромиграция, окисление, коррозия, электрокоррозия

Межсоединения

Сопротивление контактов R

Образование интерметаллидов

Резисторы

Сопротивление контактов R

Окисление

Конденсаторы

Емкость С

Диффузия, окисление

Микромеханический акселерометр (ММА)

Чувствительный элемент преобразователя механической деформации в ускорение

Микроползучесть

1,5-2

* Данные взяты из кн.: Технология СБИС. В 2 кн. Кн. 2 / К. Могэб [и др.]; пер. с англ.; под ред. С. Зи. М.: Мир, 1986. С. 431.

Необходимо отметить, что к развитию своих идей Д. Гиббс провидчески подтолкнул сам. Как было сказано в предисловии к "Принципам..." , он "признает неполноценность всякой теории", которая не учитывает свойств веществ, наличие излучения и других электрические явлений.

Фундаментальное уравнение вещества по Гиббсу (с учетом термических, механических и химических свойств) имеет вид полного дифференциала:

или, что то же, для удобства визуального анализа:

здесь Гиббс использует следующие обозначения: ε – энергия; t – температура; η – энтропия; р – давление; V – объем; μ, – химический потенциал; m i – мольная доля /-го компонента (i= 1, ..., п ).

Семенченко, используя метод обобщенных функций (пфаффовы формы) ввел в G-модель напряженности электрического (Е ) и магнитного (Я) полей, а также соответствующие им "координаты" – электрическую (Р ) и магнитную (М ) поляризации, модифицировал G-модель до вида

Поэтапная процедура применения наиболее простой модели – Аррениуса – для анализа данных испытаний по определению температурной зависимости процессов деградации компонентов выглядит так:

В связи с изложенным важно сделать замечания о концепции надежности, принятой фирмой Motorola для полупроводниковых диодов, транзисторов и ИС.

Как известно, надежность – это вероятность того, что ИС сможет успешно выполнить свои функции в заданных условиях эксплуатации за определенный промежуток времени. Это классическое определение.

Другое определение надежности связано с качеством. Поскольку качество – мера изменчивости, т.е. вариабельности, вплоть до потенциального, скрытого несоответствия или отказа в репрезентативной выборке, то надежность – мера изменчивости во времени в условиях эксплуатации. Следовательно, надежность – это качество, развернутое во времени в условиях эксплуатации.

Наконец, надежность продукции (изделий, в том числе компонентов) – это функция правильного понимания требований заказчика и внедрение или воплощение этих требований в конструкцию, технологию изготовления и эксплуатацию изделий и их конструктивов.

Метод QFD (quality function deployment) представляет собой технологию развертывания функций качества, структурирование функции качества (что означает проектирование изделий, при котором сначала выявляются запросы потребителей, затем определяются технические характеристики продукции и процессов изготовления, наилучшим образом соответствующие выявленным потребностям, в результате чего достигается более высокое качество продукции). Метод QFD полезен для установления и отождествления требований к качеству и надежности с целью их реализации в инновационных проектах.

Количество наблюдаемых отказов за общее количество часов в конце периода наблюдения носит название точечной оценки интенсивности отказов. Эта оценка получается из наблюдений за выборкой, например, испытуемых ИС. Оценка интенсивности отказов выполняется с использованием χ2-распределения:

где λ* – интенсивность отказа; а – доверительный уровень значимости; v = 2r 2 – число степеней свободы; r – число отказов; п – число изделий; t – продолжительность испытаний.

Пример 5.6

Вычислить значения функции χ2 для 90%-ной доверительной вероятности.

Решение

Результаты вычислений приведены в табл. 5.21.

Таблица 5.21

Вычисленные значения функции χ 2 для 90%-ной доверительной вероятности

Для повышения достоверности доверительного уровня оценки требуемой сегодня наработки фирмой Motorola используется подход, основанный на определении интенсивности отказов компонентов в форме уравнения Эйринга:

где А, В, С – коэффициенты, определяемые по результатам испытаний; Т – температура; RH – относительная влажность; Е – напряженность электрического поля.

Таким образом, изложенный материал свидетельствует о том, что в условиях достаточно широкого применения изделий зарубежной электронной техники с неизвестными показателями надежности можно рекомендовать использование представленных в настоящей главе методов и моделей для определения и прогнозирования показателей надежности компонентов и систем: для компонентов – с применением физических представлений на основе уравнений Аррениуса, Эйринга, Семенченко, Гиббса; для систем – с применением комбинаторного анализа (параллельного, последовательного и иерархического типов).

  • Используемый на рисунке термин "Долина" – термин в физической химии (официально не определенный), применяющийся в диаграммах состояний частиц для частиц, понизивших свою энергию, "упавших" с вершины в долину (по аналогии с альпинизмом), преодолевших энергетический барьер и потерявших энергию после осуществления работы, т.е. осуществивших переход на более низкий энергетический уровень, характеризуемый меньшей энергией Гиббса, что является следствием реализации принципа минимума энергии, описанного в термодинамических потенциалах и введенного в науку (например, в теоретическую физику) самим Д. Гиббсом.
  • Гиббс Дж. В. Основные принципы статистической механики, разработанные со специальным применением к рациональному обоснованию термодинамики // Гиббс Дж. В. Термодинамика. Статистическая механика: пер. с англ.; под ред. Б. М. Зубарева; сост. У. И. Фракфурт, А. И. Фрэнк (серия "Классики науки"). М.: Наука, 1982. С. 352-353.

Согласно работе "прогноз определяется как вероятностное научно обоснованное суждение о перспективах, возможных состояниях того или иного явления в будущем и (или) об альтернативных путях и сроках их осуществления".

По оценкам отечественных и зарубежных специалистов в настоящее время насчитывается более 150 методов прогнозирования, но число основных методов, повторяющихся в различных вариациях, во много раз меньше. Считают, что указанные методы базируются на двух крайних подходах: эвристическом и математическом.

Применительно к механическим системам, в частности, к автомобилям, методы прогнозирования при оценке показателей надежности начали применяться сравнительно недавно. Так, для нормирования пробегов новых конструкций L H рекомендована зависимость

где L C , σ c - средние значение и квадратическое отклонение ресурса серийной машины в эксплуатации.

Если увязать L c с календарным временем Т, то приходим практически к временному ряду L (или L H) в функции от Т.

В работе дана методика прогнозирования ресурсов агрегатов с использованием временных рядов и приведены конкретные примеры прогноза ресурсов двигателей. Применительно к автомобильному транспорту разработаны методы прогнозирования и управления технической эксплуатацией и надежность автомобилей . В частности, в работе рассмотрена система непрерывного прогноза оценки удельного уровня трудоемкости технического обслуживания и текущего ремонта, учитывающая связь краткосрочного, среднесрочного и долгосрочного прогнозов; даны конкретные примеры прогнозов указанных величин для грузовых автомобилей, автобусов и легковых автомобилей; рассмотрены основные аспекты принятия решений в условиях риска и неопределенности, основанные на байесовском подходе, теории игр и статистических решений.

Широкое распространение методы прогнозирования получили при оценке остаточного ресурса . В общем случае речь идет об аппроксимации индивидуальной реализации, связанной, например, с износом (или накопленным повреждением) аналитической зависимостью, параметры которой определяются по результатам диагностирования на предпрогнозном периоде с последующей экстраполяцией на интервале упреждения (прогноза) до достижения предельного состояния.

В ряде работ рассматриваются вопросы, связанные с прогнозированием (расчетом) параметров нагрузочных режимов агрегатов и деталей, необходимых для оценки статической прочности и усталостной долговечности при проектировании . Как правило, предлагаемые методы основываются на обобщении экспериментальных данных по нагрузочным режимам машин-аналогов или моделировании с использованием ЭВМ, но не предусматривают введения временного тренда. Поэтому прогноз осуществляется с помощью подстановки в расчетные зависимости конструктивных параметров проектируемой машины.

Теоретические и прикладные разработки в области прогнозирования надежности механических систем достаточно подробно освещены в ряде работ [...]. Порядок прогнозирования при использовании расчетных методов в общем случае предусматривает представление структуры изделия в виде иерархической системы "деталь - сборочная единица-изделие"; определение спектров нагрузок; формирование моделей физических нагрузок, приводящих к отказу; установление критериев отказов и предельных состояний; определение численных значений показателей надежности; оценку достоверности прогноза; корректирование показателей надежности с использованием результатов прогноза. Однако применение вышеизложенных положений для конкретных прогнозов затруднительно и это связано не только со спецификой изделий различных отраслей машиностроения, но и с недостаточной изученностью и неоднозначностью трактовки таких понятий, как классификация объекта прогноза, многовариантность и синтез прогнозов, процедуры принятия решений на основе прогнозной (априорной) информации и др. Поэтому целесообразно подробнее остановится на вопросах расчета показателей надежности механических систем при проектировании с точки зрения теории прогнозирования.

Под методологией прогнозирования понимается область знаний о методах, способах и системах прогнозирования . В соответствии с упомянутой работой и приведенной в ней терминологией под методом прогнозирования будем понимать способ исследования объекта прогнозирования, направленный на разработку прогноза, под методикой - совокупность одного или нескольких методов, наконец, под системой прогнозирования - упорядоченную совокупность методик и средств их реализации.

Теория прогнозирования включает в себя анализ объекта прогнозирования, в частности классификацию; методы прогнозирования, подразделяющиеся на формализованные (математические) и интуитивные (экспертные); системы прогнозирования, в том числе непрерывного, при котором за счет обратной связи осуществляется корректировка прогнозов в процессе функционирования объекта.

В соответствии с работами объекты прогнозирования классифицируются:

по природе (научно-технические, технико-экономические и т. д.);

по масштабности - в зависимости от числа значащих переменных, входящих в описание объекта, различают сублокальные (1-3 переменных), локальные (4-14), субглобальные (15-35), глобальные (36-100) и суперглобальные (свыше 100 переменных);

по сложности - в зависимости от степени взаимосвязанности переменных подразделяют на сверхпростые (отсутствие взаимосвязи), простые (наличие парных взаимосвязей), сложные (наличие взаимосвязи и взаимовлияния) и сверхсложные (необходимость учета взаимосвязи);

по степени детерминированности (детерминированные" стохастические и смешанные);

по характеру развития во времени регулярной составляющей процесса (тренда) - дискретные, апериодические и периодические;

по информационной обеспеченности периода ретроспекции - рассматривают объекты с полным количественным обеспечением, с неполным количественным обеспечением, с наличием качественной информации (и частично количественной), с полным отсутствием ретроспективной информации.

Прогнозирование показателей надежности механических систем, на наш взгляд, следует рассматривать в узком и широком смысле.

В узком смысле прогнозирование включает определение показателей надежности как характеристик, развернутых во времени; считается, что основные исходные данные - вид конструкции, материалы и технология изготовления деталей, нагрузочные режимы, условия эксплуатации, периодичности и объемы ТО и ремонтов, цены на детали и др. - заданы. Другими словами, прогнозирование в узком смысле производится после проверочного расчета. Помимо этого, накоплены определенные статистические данные о ресурсах деталей и агрегатов, т. е. предполагается, что имеется ретроспективная информация, которая может быть использована для экстраполяции, адаптации вероятностно-статистических моделей и т. п. Очевидно, в этом случае методы прогнозирования показателей надежности включают как основные или верифицируемые варианты различные виды расчетов показателей надежности при проектировании, основанные на физических моделях отказов.

В широком смысле прогнозирование подразумевает, что исходные данные для получения оценок надежности определяются с использованием опережающих методов прогнозирования (патентный, публикациониый и др.). Например, на основе опережающих методов прогнозируются параметры кривой износа, с помощью которой прогнозируются показатели надежности. Следовательно, в широком смысле прогнозирование показателей надежности разбивается на два этапа: первый - прогноз исходных данных; второй - собственно прогноз показателей надежности.

Трудность оценки надежности возрастает многократно при создании новых конструкций, материалов и т. д., по которым отсутствует количественная информация. Поскольку при получении информации о результатах различных испытаний происходит уточнение исходных данных, ресурсов и т. п., то прогнозирование может быть осуществлено только в виде непрерывной прогнозирующей системы.

В предложенной книге основное внимание уделено разработке методологии прогнозирования показателей надежности в узком смысле.

Рассмотрим объект прогноза - показатели надежности (ПН) деталей и агрегатов автомобиля - с точки зрения рассмотренной выше классификации. Очевидно, по природе ПН следует отнести к классу научно-технических прогнозов, включающих наряду с новыми видами техники, новыми материалами и прогноз технических характеристик. Для оценки масштабности и сложности объекта прогнозирования составим табл. 1.7, в которую включим основные показатели надежности (см. табл. 1.3) и модели расчета, рассмотренные в п. 1.2. Несмотря на условный характер классификации, из табл. 1.7 видно, что по масштабности и сложности показатели надежности агрегатов и автомобиля следует отнести к глобальным (суперглобальным) и сложным (сверхсложным).

По степени детерминированности оценки ПН являются стохастическими, при этом следует обратить внимание, что при расчете показателей надежности элементов деталей, т. е. на низшем уровне, мы сталкиваемся с так называемой природной неопределенностью, когда невозможно дать точную оценку показателя, например среднего ресурса, из-за недостаточной изученности объекта.

По характеру развития ПН классифицировать трудно. Так, на уровне расчетных моделей на износ реализации его могут быть представлены апериодическими зависимостями, тогда как в расчетах на усталость нагрузочные режимы - это случайные не-стационарные процессы. В то же время, рассматривая ретроспективную нормативную информацию о ресурсах автомобилей до капитального ремонта, можно сказать, что в зависимости от времени выпуска (или существенной модернизации) назначаемый заводом ресурс изменяется дискретно.

Наконец объект прогнозирования с точки зрения информационной обеспеченности полностью отвечает введенному ранее понятию прогнозирования надежности механических систем в узком и широком смысле.

Таким образом, оценки показателей надежности деталей и агрегатов автомобиля соответствуют принципам классификации объектов прогнозирования.

Математические формализованные методы прогнозирования подразделяют на симплексные (простые), статистические и комбинированные. Основу симплексных методов составляют экстраполяции по временным рядам (метод наименьших квадратов, экспоненциального сглаживания и другие). Статистические методы включают корреляционный и регрессионный анализ, метод группового учета аргументов, факторный анализ. Под комбинированным методом подразумевается синтез вариантов прогнозов, выполненных о использованием математических и эвристических методов.

Следует обратить внимание на отличие прогнозных оценок при использовании общих методов прогнозирования и при оценке показателей надежности. Так, прогноз в общем случае представляется в виде точечной и интервальной оценок. При прогнозировании надежности, например, ресурса деталей его средняя величина совпадает с точечным прогнозом, но для перехода к другим показателям интервальной оценки недостаточно, т. к. необходимо знать плотность распределения ресурсов.

Учитывая, что при прогнозировании ПН на ранних стадиях проектирования нет возможности проведения экспериментов с целью раскрытия "природной" неопределенности, возможный путь решения сводится к разработке нескольких прогнозных методов с целью использования их в комбинированнном прогнозе. Поэтому указанные математические методы должны быть дополнены специальными методами и методиками, которые условно можно разделить на три группы.

Первая группа специальных методов, предназначенная для прогнозирования показателей надежности деталей, включает вероятностно-статистические модели (ВСМ), основанные на феноменологических явлениях и гипотезах (расчеты на износ, усталость прочность и т, д.). Однако, как показал анализ (см. п, 1.2.), применение этих моделей для прогнозирования ПН требует со-ответствующей систематизации и классификации, а также накопления и обобщения опыта прогнозных расчетов применительно к конкретным деталям с целью повышения их достоверности и точности.

Ко второй группе следует отнести методы, являющиеся обобщением экстраполяционных и статистических методов и отражающие специфику эксплуатационных отказов, в частности корреляционные уравнения долговечности (КУД) для деталей шасси автомобиля . Очевидно, отдельные разработки по КУД должны быть формализованы в виде соответствующей методики.

Третью группу специальных методов, предназначенных для прогнозирования показателей надежности сборочных единиц, агрегатов, изделия в целом, составляют структурно-функциональные модели (СФМ), которые в общем случае отражают взаимосвязь и взаимовлияния отдельных деталей на протекание разрушительных процессов, приводящих к отказам, предельные состояния сопряжений и т. д. В частном случае СФМ может быть построена с учетом показателей надежности деталей, спрогнозированных с помощью общих и специальных методов первой и второй группы. На основании этих прогнозов производится расчет (моделирование) показателей надежности восстанавливаемого объекта. Многовариантность и неопределенность прогноза определяются не только многовариантностью и неопределенностью исходных данных, но и стратегией ремонтов (замен), коррелируемостью отказов и т. д. Отсутствие общей методики прогнозирования ПН с помощью СФМ требует проведения соответствующих исследований.

Введение специальных методов увеличивает число вариантов прогноза ПН, что приводит к усложнению процедуры принятий решений на основе прогнозной информации. Редуцирования числа вариантов можно достигнуть с помощью комбинированного прогноза, методика которого, на наш взгляд, должна быть усовершенствована с учетом разработок, приведенных в , и конкретизирована применительно к ПН.

Дополним классификацию объектов прогноза по масштабности и сложности рассмотренными методами прогнозирования. Из табл. 1.6 видно, что специальные методы находят применение при оценке всех ПН и моделей отказов; использование комбинированных методов приводит к увеличению масштабности и сложности объекта прогноза, но это пока единственный путь повышения точности и достоверности оценок ПН при проектировании.

Заметим, что практическое применение общих и специальных методов прогнозирования становится возможным при наличии конкретных методик расчета, доведенных до соответствующих алгоритмов и программ, и информационной базы, включающей конструктивную документацию и банки данных по изделиям- аналогам о показателях надежности, условиях эксплуатации, испытаниях, нагрузочных режимах, износах, предельных состояниях и т. д. Для конкретных деталей или агрегатов автомобиля речь идет о формировании локальных информационных баз, обобщение которых позволит перейти к единой информационной базе отрасли.

На основе прогнозов ПН производится выбор оптимальных вариантов конструкции и оптимальной стратегии технического обслуживания и ремонта; разработка мероприятий по повышению надежности; уточнение параметров и режимов работы; планирование выпуска запасных частей, т. е. фактически осуществляется управление надежностью. Следовательно, прогнозная (априорная) информация должна использоваться для решений, связанных с управлением надежностью проектируемой конструкции.

Известно , что процесс принятия решений в общем виде характеризуется, во-первых, наличием одной или нескольких целей; во-вторых, разработкой альтернативных вариантов решений; в-третьих, выбором рационального (оптимального) решения, основанного на определенных критериях, с учетом факторов, ограничивающих возможности достижения цели. В зависимости от исходной информации различают задачи принятия решений в условиях определенности, риска и неопределенности. Для решения задач в условиях неопределенности используется теория статистических решений, которая подразделяется на два направления в зависимости от того имеется или отсутствует возможность проведения экспериментов в процессе принятия решений. Очевидно, разработка мероприятий по управлению надежностью на основе прогнозной информации является типичной задачей принятия решений в условиях неопределенности, зависящей от так называемых природных факторов, не известных или известных с недостаточной точностью в момент принятия решения и обусловленная их недостаточной изученностью.

Комплекс теоретических и прикладных вопросов, связанных с управлением надежностью при проектировании, является логическим продолжением и обобщением теории прогнозирования ПН и представляет, на наш взгляд, самостоятельную проблему. Поэтому, в данной работе целесообразно ограничиться рассмотрением некоторых вопросов управления надежностью, непосредственно относящихся к использованию прогнозной (априорной) информации о показателях надежности в процессе принятия решений.

Улучшение как фактор, даже важнейший, непрерывного совершенство- вания продукции, тем не менее не может быть реализован без соответст- вующей системы менеджмента качества. Само содержание улучшения и его значимость также зависят от уровня системы. Чтобы правильно, с минималь- ными погрешностями, прогнозировать динамику развития методов улучше- ния качества, необходимо рассмотреть динамику развития систем управле- ния качеством, обеспечивающих соответствующие уровни улучшения.

Следует, прежде всего, отметить, что общепризнанной систематизации,

а тем более классификации, систем менеджмента качества пока не существу-

ет. Многие и зарубежные, и отечественные авторы работ по качеству предла- гают свои методы систематизации, с которыми можно соглашаться или предлагать собственные. Практически все признают, что каждая новая сис- тема менеджмента качества не создается на новом месте, а в результате на- копления новых средств и методов управления реформируется в новую сис- тему, в максимальной степени соответствующую действующей на тот мо- мент экономике ведущих стран мира. В результате образуется система работ по качеству более высокого типа. Совершенно естественно, что новая систе- ма менеджмента качества окончательно складывается практически на пике действующих форм экономики.

Прослеживая историю развития экономики, можно выделить несколько этапов организации работ по качеству .

Первый этап – индивидуальная форма организации работ. Она харак-

теризуется тем, что один работник решает самостоятельно все вопросы соз- дания, изготовления и реализации продукции, неся при этом всю ответствен- ность за ее качество. Такая форма соответствует домануфактурному ремес- ленному производству, а также характерна для современной индивидуальной трудовой деятельности, когда масштабы производственного процесса не тре- буют глубокого разделения труда.

Эта начальная форма труда при внимательном рассмотрении обнаружи-

вает все элементы современного процесса управления качеством:

Выявление потребности,

Соответствие продукции потребностям,

Требуемая последовательность и точность изготовления задуманной продукции,

Периодический контроль своей работы,

Внесение корректировок в процесс (обратная связь) и т. д.

Второй этап – цеховая форма работ. Эта форма работ вызвана перехо-

дом к мануфактурной организации производства. Для нее уже характерно разделение функций и ответственности за качество.

Руководители или владельцы цеха определяли так называемую полити- ку в области качества, определяли вид продукции, который пользуется наи- большим спросом, и требования к ней. Мастер организовывал производство, устанавливал последовательность и содержание (т. е. технологию) работ. За качество работы ответственность нес работник, а мастер – за организацию работ.

С ростом масштабов производства формируется самостоятельная служба контроля, а при производстве оружия – еще и «государев надзор». Под влия- нием развития контрольной функции стало формироваться впечатление, что

контроль – главное, если не единственное средство достижения высокой ка- чества продукции. Происходит некая фетишизация роли контроля в меха- низме управления качеством.

Цеховая форма контроля существует и в наше время на многих предпри-

ятиях малого бизнеса.

Третий этап – индустриальная форма работ. Эта форма связана с даль-

нейшим ростом масштаба производства, углублением его концентрации и специализации.

На этом этапе происходит выделение функции разработки и проектиро-

вания новой продукции в самостоятельные профессиональные подразделения или организации. Для третьего этапа характерно усиление роли и значения таких звеньев производства, как проектирование, испытания, технологиче- ская подготовка. Вместе с этим эти направления работ еще не рассматрива- ются как звенья единой цепи в общей системе работ по качеству.

В области работ по качеству происходит процесс большего углубления в техническом разделении труда на ряд частных функций, выполняемых раз-

личными в профессиональном отношении группами подразделений и людей.

Техническое разделение труда – это не только дифференциация, но и ин-

теграция производственного, трудового процесса.

Усиливаются контакты с поставщиками сырья, материалов и комплек- тующих изделий. В работу по качеству втягивается все большее число служб и участников.

Вместе с этим индустриальной форме работ также присуще несогласо- ванность, нечеткое взаимодействие между конструкторскими и технологиче- скими службами, производством и службой технического контроля и т. п.,

что служит причиной многих недоразумений при обеспечении качества, пря- мо ухудшая его, замедляя темпы создания и освоения новых видов продук- ции, снижая эффективность работ по качеству.

Эта форма работ по качеству превалировала в первой половине прошло-

го столетия. Однако за рубежом с середины 60-х годов под влиянием усили- вающей конкуренции на рынке проблемы качества стали обсуждаться не только в производственных подразделениях, но и на уровне руководства фирм, которое стало понимать решающее значение качества в благополучии фирмы. В ряде работ А. Фейгенбаума (США) просматривается обеспокоен- ность, что забота о качестве, разложенная на всех, обезличивается, может стать ничьей .

В Японии складывается новый подход к качеству, основанный на идее участия всего персонала в контроле собственной деятельности, изучении и развитии методов улучшения качества.

В России на многих предприятия разрабатывались новые подходы к ор-

ганизации работ по качеству, отличные от традиционных (БИП, НОРМ, КА-

НАРСПИ и др.).

Развитие производства и возрастающая роль качества продукции требо- вали сделать следующий шаг в развитии форм организации работ по качест- ву с целью усиления взаимодействия всех подразделений и служб, обеспе-

чивающих качество.

Четвертый этап – системная организация работ по качеству. К 80-м годам 20-го столетия и у нас, и за рубежом все явственнее ощущалось, что

контроль качества даже при всемерном его усилении и расширении масшта- бов, увеличении числа объектов и участников не может существенным обра- зом изменить в лучшую сторону состояние дел с качеством продукции. Кон-

троль, даже всеобщий, не мог обеспечить решения многих вопросов, кото- рые все острее ставила практика: как меняются требования к качеству с раз- витием технического прогресса, как качество зависит от платежеспособного

спроса, как добиться непрерывного обновления качества и др.

Для того чтобы объединить все возможности улучшения качества в еди-

ный комплекс, нужно было глубже проникнуть природу качества, понять, ка-

кие силы и в каком порядке участвуют в процессе создания, изготовления и обновления продукции, найти закономерности создания системы менедж- мента гарантирующей непрерывное изменение качества.

Так постепенно, с середины 80-х годов формировалась всеобщая система

управления качеством (TQM), вобравшая себя все лучшее, что было в пред- шествующих системах менеджмента качества, и обогащенная стандартами ИСО серии 9000 и новыми подходами, изложенными в принципах менедж- мента качества .

В отдельных работах создание систем управления качеством отсчи-

тывается от конца 19-го века, когда в производстве началось применение стандартов, метрологии, появилась конвейерная сборка. К этому же периоду

относятся работы Ф. Тэйлора по внедрению допусков в конструкторскую до-

кументацию, которые заложили научные основы управления.

Польский ученый К. Лисецки в 1997 году предложил интересную гра- фическую схему эволюции подходов к управлению качеством (рис. 5.1). В этой схеме полностью отсутствуют разработки советских специалистов и ученых в период 1955-1978 годов. Исторически было бы правильно схему Лисецки дополнить этими разработками, что и было сделано А. Гличевым в работе .

Какие дополнения в приведенной схеме появятся в дальнейшем? Уже се-

годня можно выделить два перспективных фактора: методы робастного пла- нирования Тагути и управление знаниями (резкое увеличение доли умствен- ного труда персонала предприятий). На наш взгляд, именно в этих направ- лениях будут развиваться системы управления качеством.

Стратегия TQM (И. Окланд)

«Реинжиниринг» бизнес-процесса (М. Хаммер)

Системы менеджмента качества,

системы обеспечения качества

Движение к тотальному качеству

Циклы качества (К. Исикава)

«Ноль дефектов» (Ф. Кросби,

Т. Катарбински, Б. Дубовиков, И. Халпин)

Японский подход к качеству (CWQC) (К. Исикава, Г. Тагути)

Система управления качеством

(А. Фейгенбаум)

Статистическийц контроль процесса

(Э. Деминг, И. Джуран)

Применение простых статистических методов (Э. Деминг)

Первое применение математических моделей (В. Шухарт)

Идеальный тип чиновничества (М. Вебер)

Теория администрирования (Х. Файлор)

Пространственно-временное распределение (Ф. и Л. Гилберт, Г. Форд)

Научные основы управления (Ф. Тейлор, К. Адамецки)

Рис. 5.1. Эволюция подходов к управлению качеством

Практика ведущих фирм и предприятий показывает, что единый ком- плекс требований к качеству продукции должен обеспечиваться на всех эта- пах жизненного цикла продукции с непрерывным ее обновлением. В работе

Приведена интересная схема механизма управления качеством (рис.5.2,

сплошные линии связи), в который входят следующие блоки:

Сфера производственного и личного потребления,

Исследование характера и объема новых потребностей рынка,

Маркетинг,

Конструкторская и технологическая подготовка производства новой продукции,

План по качеству,

Качество изготовленной продукции,

Информация о фактическом качестве,

Сравнение информации,

Выработка мероприятий по устранению причин отклонений качества,

Реализация мероприятий по поддержанию качества или его повыше-

Вместе с этим, по нашему мнению в рассматриваемую схему целесооб-

разно внести самостоятельный блок «Улучшение качества», под которым по- нимаются идеи любых сотрудников предприятия по улучшению продукции или процессов. В этом механизме (рис. 5.2, пунктирные линии) предложения по улучшению качества подаются в виде идей в блок «Конструкторская и технологическая подготовка», где они или отвергаются, или в виде техни- ческоих предложений попадают в блоки «Исследование …» и «Марке- тинг». В этих блоках оценивается интерес к улучшениям потребителей и вносятся возможные коррекции по предложению. В блоке «Конструкторская и технологическая подготовка» эти скорректированные предложения преоб- разуются в технико-экономические решения и поступают в блок «План по качеству», откуда направляются в блок «Производство (качество изготов- ленной продукции)» в виде изменений в конструкторской и технологиче- ской документации. Далее – по схеме сравнения фактического и запланиро- ванного качества.

Прогнозирование надежности технического объекта – это научное направление, изучающее методы предсказания технического состояния объекта при воздействии на него заданных факторов.

Прогнозирование применяется для определения остаточного ресурса систем, их технического состояния, числа ремонтов и технических обслуживаний, расхода запасных частей и решения других задач в области надежности.

Прогнозирование показателей надежности может производиться по разнообразным параметрам (например, по усталостной прочности, динамике процесса изнашивания, по виброакустическим параметрам, содержанию элементов износа в масле, по стоимости и трудовым затратам и т.д.).

Современные методы прогнозирования подразделяют на три основные группы.

1. Методы экспертных оценок, сущность которых сводится к обобщению, статистической обработке и анализу мнений специалистов. Последние обосновывают свою точку зрения, используя информацию об аналогичных объектах и анализируя состояние конкретных объектов.

2. Методы моделирования, базирующиеся на основных положениях теории подобия. Эти методы заключаются в формировании модели объекта исследования, проведении экспериментальных исследований модели и в пересчете полученных значений с модели на натуральный объект. Например, путем проведения ускоренных испытаний сначала определяют долговечность изделия в форсированных (жестких) условиях эксплуатации, а затем с помощью соответствующих формул и графиков определяется долговечность в реальных условиях эксплуатации.

3. Статистические методы, из которых наибольшее применение находит метод экстраполяции. В его основе лежат закономерности изменения прогнозируемых параметров во времени. Для описания этих закономерностей подбирают по возможности простую аналитическую функцию с минимальным числом переменных.

Так, путем статистической обработки определяют параметр, который служит диагностическим признаком технического состояния двигателя, например, прорыв картерных газов или расход масла. По этому параметру прогнозируется остаточный ресурс. При этом следует учитывать, что действительный ресурс может колебаться вокруг полученной величины.

Основными причинами неточного прогнозирования являются недостаточная полнота, достоверность и однородность информации (однородной называется информация об одинаковых изделиях, эксплуатируемых в одинаковых условиях), низкая квалификация прогнозиста.

Эффективность прогнозирования устанавливают по изменению показателя надежности в результате внедрения рекомендованных средств ее повышения.


Настоящие методические указания распространяются на аппаратуру радиоэлектронную бытовую (далее - аппаратура) и устанавливают задачи, принципы, методы и порядок прогнозирования надежности для стадии эксплуатации изделия и его составных частей (изделие) в процессе исследования, разработки, производства и модернизации аппаратуры.

1 . ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Прогнозирование надежности есть предсказание значений показателей надежности (ПН) изделия на определенный период его эксплуатации на базе информации, известной из проектной документации, материалов испытаний на надежность опытной партии (образцов), изделий установочной серии и серийного производства, а также из опытно-статистических данных об изделиях-аналогах.

1.2. Прогнозирование надежности представляет собой комплексный, многоэтапный, взаимоувязанный процесс определения показателей надежности (ПН) изделия для стадий его производства и эксплуатации.

1.3. Задачами прогнозирования надежности являются:


обоснование принципиальной возможности обеспечения требований, предъявляемых к надежности;

выбор оптимальных по надежности схем и конструкций изделия;

уточнение показателей надежности изделия и его составных частей;

установление требований к системе технического обслуживания и ремонта изделия, в том числе к составу и количеству запасных частей в части обеспечения надежности.

1.4. Прогнозирование надежности аппаратуры осуществляется на основе методов: экспертных (см. приложение 1 ), аналитических (метод подобия изделий и схем, метод графов, поэлементный метод расчета ПН без учета нагрузки и с учетом нагрузки аппаратуры, см. приложения 2 - 4 ) и экспериментально-аналитических (метод прогнозирования надежности по результатам технологической приработки аппаратуры, приведенной в приложении 5 ), в том числе с применением автоматизированных систем обработки информации (АСОИ) и систем автоматизированного проектирования (САПР).


системы технического обслуживания и ремонта;

перспективного уровня надежности аппаратуры.

1.6. Исходной информацией для прогнозирования ПН изделий являются:

требования директивных документов;

программа комплексной стандартизации по перспективному развитию данного вида аппаратуры;


формирование организационных и технических требований по обеспечению надежности изделия.

3.8. Результатом прогнозирования надежности являются значения показателей надежности изделия, вносимые в отчетную документацию.

1.9. Результаты прогнозирования ПН изделия используют при разработке программ обеспечения надежности (ПОН), программ повышения надежности, программ научно-технического и организационного развития, программ комплексной стандартизации и других программ и планов.

2 . ОСНОВНЫЕ ПРИНЦИПЫ ПРОГНОЗИРОВАНИЯ НАДЕЖНОСТИ

2.1. Основным принципом прогнозирования надежности изделий должен быть системный подход, позволяющий учитывать особенности назначения изделия, его конструкции, возможности производства и условий эксплуатации, достигнутый уровень надежности комплектующих изделий и материалов.

2.2. Решение задач прогнозирования надежности аппаратуры проводят на этапах разработки ТЗ, технического предложения, эскизного проекта, технического проекта, изготовления опытных образцов (партий), установочных серий и серийного производства, последовательно уточняя прогнозируемые значения ПН на каждом из указанных этапов.

2.3. На этапах разработки ТЗ и технического предложения для прогнозирования ПН изделий рекомендуется экспертный метод или метод подобных изделий с учетом требований директивных документов и достигнутого мирового уровня надежности аппаратуры и КИ.

2.4. На этапе разработки эскизного проекта аппаратуры осуществляют предварительное прогнозирование надежности изделия методом подобных изделий или схем или методом графов, или поэлементным методом расчета без учета нагрузки аппаратуры и др.

2.5. На этапе разработки технического проекта аппаратуры проводят детальное прогнозирование теми же методами по п. 2.4 с учетом сложности изделия, наихудших реальных условий окружающей среды, конструктивных и функциональных изменений, перспектив развития системы технического обслуживания и ремонта изделия.

2.6. На этапе разработки рабочей конструкторской документации (РКД) проводят окончательное прогнозирование ПН, в основном, поэлементным методом с учетом нагрузки аппаратуры.

2.7. На этапе выпуска установочной серии и в процессе производства аппаратуры проводят прогнозирование надежности на основе получения ПН при технологической приработке (прогоне) изделия и др.

2.8. При использовании различных методов прогнозирования надежности необходимо соблюдать принцип полноты и однородности информации.

2.9. При прогнозировании надежности изделий необходимо соблюдать принцип преемственности, который заключается в использовании достоверных данных о надежности типовых элементов, сборочных единиц, КИ и других составных частей изделия.

3 . ПРОГНОЗИРУЕМЫЕ ПОКАЗАТЕЛИ НАДЕЖНОСТИ

3.1. Прогнозируемую надежность аппаратуры определяют показателями надежности по свойствам: безотказности, долговечности, ремонтопригодности и сохраняемости.

3.2. Для аппаратуры основными прогнозируемыми показателями надежности являются:

по безотказности:

вероятность безотказной работы p (t );

средняя наработка на отказ Т 0 , для восстанавливаемых изделий;

средняя наработка до отказа Т ср, для невосстанавливаемых изделий;

по ремонтопригодности:

среднее время восстановления работоспособного состояния Т в;

по долговечности:

средний ресурс Т ср;

по сохраняемости:

g-процентный срок сохраняемости Т с g ;

средний срок сохраняемости Т с .

3.3. Комплексными показателями надежности аппаратуры являются коэффициент готовности К г и коэффициент технического использования К т.

3.4. Обязательному прогнозированию подлежат показатели надежности, установленные в ТЗ и ТУ.

3.5. В результате прогнозирования надежности определяется вероятность Р (К ) удовлетворения прогнозируемого значения ПН изделия, например (), значению ПН (Т 0), установленному в ТЗ (ТУ), т.е. Р (К ) = Р ( > Т 0).

Для этого определяется соотношение

характеризующее «запас по надежности» при прогнозировании надежности аппаратуры.

Значение вероятности Р (К ) определяется по графику, приведенному на черт. 1 , где Р i (K i ) = P (T 0 > ) или P j (K j ) = P (T 0 > ).

3.6. Установленное в ТЗ (ТУ) значение вероятности Р (К ) определяет минимально допустимое значение соотношения К («запаса по надежности») по результатам прогнозирования.

4 . МОДЕЛИРОВАНИЕ НАДЕЖНОСТИ

4.1. Прогнозирование надежности осуществляют на основе методов моделирования. Моделирование надежности аппаратуры - исследование надежности путем построения ее модели.

4.2. Для моделирования надежности применяют математическое моделирование.

4.3. Модель надежности включает структурную схему надежности (ССН), графы состояния изделий и математические выражения для определения ПН изделия.

Вероятность безотказной работы к зависимости от коэффициента К

4.4. Основой для разработки ССН и графов состояния изделия является:

вид изделия, его назначение и область применения;

структурная схема изделия - аналога;

порядок изготовления изделия и доставки его потребителю, его техническое обслуживание и ремонт в течение гарантийного и послегарантийного периода эксплуатации;

условия эксплуатации;

критерии отказа изделия.

4.5. Графы состояний и ССН изделия разрабатывают, принимая во внимание, что *

* Надежность программного обеспечения и человеческого фактора не учитывается.

каждая составная часть изделия в соответствии с принятым уровнем разукрупнения представляет собой элемент ССН с установленными ПН;

провода, кабели, жгуты, контактные соединители, пайки и скрутки объединяют в один элемент ССН;

отказ одного элемента нерезервированной ССН приводит к полному отказу изделия;

отказ каждого элемента ССН независим от отказов всех других блоков.

4.6. Предельный уровень разукрупнения изделия определяется назначением, сложностью изделия, конструктивными и технологическими особенностями, возможностью анализа причин и характера отказов и состоянием исходной информации.

4.7. Математические выражения при моделировании надежности определяют на основе ССН и графов состояний изделий.

5 . ПОРЯДОК ПРОГНОЗИРОВАНИЯ НАДЕЖНОСТИ

5.1. На каждом этапе прогнозирования выбирают метод моделирования и определяют:

показатели надежности изделия;

этапы эксплуатации, для которых будет производиться прогнозирование надежности;

структурную схему надежности изделия;

граф состояния изделия;

математические выражения для расчета ПН изделия;

наихудшие условия эксплуатации;

нагрузки на составные части изделия;

интенсивности отказов составных частей и элементов.

5.2. Исходную информацию для прогнозирования надежности, ее сбор, обработку и систематизацию осуществляет служба надежности головного предприятия по видам техники в соответствии с ГОСТ 27.505-86 и направляет ее разрабатывающим предприятиям.

5.3. Работы по прогнозированию надежности планируют в рамках ПОН или программ повышения надежности.

5.4. Работы по прогнозированию надежности аппаратуры на стадии разработки осуществляются под руководством главного конструктора предприятия-разработчика совместно со службой надежности предприятия-разработчика (изготовителя).

5.5. Работы по прогнозированию надежности аппаратуры на стадии производства осуществляются под руководством главного инженера службой надежности.

5.6. Результаты прогнозирования надежности отражают в отчетной документации по этапам исследований и разработки изделия и направляют в адрес головного предприятия по видам техники для формирования банка данных.

5.7. Контроль за прогнозированием надежности аппаратуры осуществляется в системе управления предприятием.

ЭКСПЕРТНЫЕ МЕТОДЫ ПРОГНОЗИРОВАНИЯ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ

1. Экспертные методы прогнозирования - это методы, основанные на использовании суждений экспертов.

2. Экспертные методы прогнозирования ПН рекомендуется применять при невозможности или нецелесообразности по конкретным условиям использовать, расчетные методы при недостаточном количестве информации, допустимости приближенной оценки, для неответственных составных частей изделия.

3. Существуют различные экспертные методы прогнозирования. Классификационными признаками, позволяющими группировать эти методы являются учет качества экспертов, способы опроса экспертов, способы обмена информацией, типы шкал, применяемых для оценки и т.д.

4. Среди экспертных методов следует отметить:

экспресс-метод экспертной оценки,

метод «эксперта и группы»,

метод «главных точек»,

метод средневзвешенных величин и др.

5. Экспресс-метод экспертной оценки заключается в определении значения экспертной оценки обобщенного показателя без предварительного определения значений оценок единичных показателей и их коэффициентов весомости.

5.1. Экспресс-метод экспертной оценки представляет собой метод определения значения обобщенного показателя надежности, исходя из значений, входящих в его состав единичных ПН и их весомости.

5.2. Целостную оценку ПН осуществляют в тех случаях, когда значения оценок единичных показателей, входящих в состав обобщенного показателя, и их коэффициенты весомости не требуются или их определение связано со значительными трудностями. Иногда целостная оценка может дать более точный результат, чем при использовании других многооперационных методов.

6. Метод «эксперта и группы» - это метод оценки ПН, основанный на последовательной работе ведущего эксперта и экспертной группы.

6.1. Ведущим экспертом назначается специалист по оцениваемым изделиям, входящий в состав экспертной группы, который самостоятельно проводит оценку ПН до начала работы экспертной группы.

6.2. В функции ведущего эксперта входит тщательный анализ оцениваемого образца, всех дополнительных материалов к нему и проведение оценочных операций, которые по его мнению необходимы для получения результата.

6.3. Задача экспертной группы сводится к ознакомлению с результатами проведенного ведущим экспертом анализа и оценки, обсуждению результатов с участием ведущего эксперта и получению в итоге обобщенного суждения о ПН.

7. Метод «главных точек» - это метод построения экспертных кривых оценки ПН на основе определения зависимости между значениями ПН и соответствующими значениями экспертных оценок в главных точках.

7.1. Экспертные кривые применяют в случаях, когда зависимости между значениями ПН и соответствующими значениями оценок не могут быть определены аналитически, а также при построении шкал для определения значений оценок показателей.

7.2. Для построения экспертных кривых используют метод «главных точек». За главные точки принимают максимальные, минимальные и средние значения ПН, их наиболее вероятные значения и т.п.

8. Метод средневзвешенных величин - это метод, в котором комплексные ПН определяют усреднением оценок отдельных показателей с учетом их коэффициентов весомости.

8.1. При использовании метода средневзвешенных величин возможны три формы участия экспертов:

эксперты назначают коэффициенты весомости ПН, а оценки единичных и комплексных показателей определяют расчетным путем;

эксперты назначают коэффициенты весомости показателей и оценки единичных показателей, а комплексные показатели определяют расчетным методом;

эксперты назначают коэффициенты весомости показателей, оценки единичных и комплексных показателей.

9. При определении характера зависимости оценок показателей от их значений методом «главных точек» эксперт учитывает различные факторы: экономическую эффективность, назначение и области применения, возможные условия эксплуатации и т.д. Перед экспертом стоит задача «оценить число - числом», то есть перевести значение показателя в его оценку. Для облегчения этой задачи рекомендуется метод «главных точек», принцип которого заключается в графическом определении экспертами вида зависимости между значениями показателей и их оценками.

Указанная зависимость может быть представлена в виде графиков, таблиц, формул. Графики строятся в системе координат: по оси абсцисс - значения показателей, по оси ординат - оценки.

По кривым, построенным отдельными экспертами, строится средняя кривая, которая для удобства расчетов может описываться аналитически.

МЕТОД ПОДОБИЯ ИЗДЕЛИЙ ИЛИ СХЕМ

1. Метод подобия изделий или схем используется при наличии ПН полученных экспериментальным путем для подобных изделий или схем. Наиболее быстрый метод определения ПН разрабатываемого изделия - это метод подобия изделий. Если же после анализа изделия приходят к выводу, что метод подобия изделий не может быть использован, то применяют метод подобия схем, т.е. сравнение со схемой, ПН которой предварительно были оценены и определены при опытной эксплуатации.

Иногда, при недостатке информационных данных применяют комбинированный метод - сравнение подобных изделий и схем.

2. В процессе сравнительного анализа проекта нового изделия и изделия-аналога на основе определения степеней различия их схемных решений, областей применения, условий эксплуатации, основных параметров и т.п. оценивают ориентировочные значения ПН проектируемого изделия.

ПРОГНОЗИРОВАНИЕ ПОКАЗАТЕЛЕЙ НАДЕЖНОСТИ МЕТОДОМ ГРАФОВ

1. Исходными данными при прогнозировании методом графов являются:

для невосстанавливаемого изделия - его структура и интенсивности отказов? i его i -х составных частей;

для восстанавливаемого изделия - кроме указанного выше структура системы технического обслуживания и интенсивности переходов изделия из состояния в состояние (? i , m i ).

2. Прогнозируемыми (определяемыми) показателями надежности являются:

для невосстанавливаемого изделия - средняя наработка до отказа Т ср и вероятность безотказной работы за установленное время Т ;

для восстанавливаемого изделия - средняя наработка на отказ Т 0 , коэффициент готовности К г, коэффициент технического использования К т, и вероятность безотказной работы за установленное время Т .

3. В соответствии с двумя уровнями качества функционирования изделия (работоспособное - неработоспособное состояние) и полной группой событий, характеризующих изделие, определяют общее количество теоретически возможных состоянии изделия. Фактическое количество состояний N составляет часть теоретически возможных состояний. Для рассматриваемого изделия строят граф, вершинами которого являются состояния, ветвями - пути перехода из состояния в состояние с соответствующими интенсивностями отказов l или интенсивностями восстановления m. Переходы, соответствующие одновременному изменению двух и более состояний, не учитываются из-за малой вероятности их наступления.

4. На основании графа составляют систему линейных дифференциальных уравнений, количество которых равно числу состояний N . Любое i -е уравнение, характеризующее S i состояние изделия, состоит из двух частей: левой и правой. Левая часть уравнения включает в себя производную изменения вероятности P i (t ) пребывания изделия в S i состоянии, а правая равна сумме произведений интенсивностей переходов? j , m j соответствующих исходящим из S j состояний и входящим в S i состояние ветвям на вероятность P j (t ) состояний S j , минус произведение суммы интенсивностей переходов из S i состояния ветвей на вероятность P i (t ) состояния S i . К N уравнениям добавляется

Для решения системы одно лишнее (любое) из N первых уравнений исключают.

5. Определение средней наработки до отказа Т ср производят в соответствии с системой дифференциальных уравнений А.Н. Колмогорова. Из уравнений исключают члены, содержащие интенсивности выхода отказовых состояний, которые являются поглощающими. Затем систему дифференциальных уравнений интегрируют, в результате чего она переходит в систему алгебраических уравнений. Принимая во внимание, что (t i - среднее время нахождения изделий в работоспособном состоянии) и начальным состоянием является состояние, в котором изделие исправно, т.е. при t = 0 P 1 (t = 0) = 1, Р i (t = 0) = 0, i ? 1, значение средней наработки до отказа Т ср определяют по формуле:

где Е р - множество работоспособных состояний изделия.

6. Среднюю наработку до отказа Т ср определяют как частное от деления суммы вероятностей p i пребывания изделия в i -x работоспособных состояниях на выражение, состоящее из суммы произведений вероятностей предотказовых состояний на суммы интенсивностей выхода из предотказовых состояний в состояние отказа, по формуле

(4)

где Е н - множество неработоспособных состояний изделия.

7. Прогнозирование коэффициента готовности (К г) или коэффициента технического использования (К т) осуществляют в соответствии с системой дифференциальных уравнении, которая в установившемся режиме при t ® ? , P i (t ® ?) = p i переходит в систему линейных алгебраических уравнений с установившимися (стационарными) вероятностями p i нахождения изделия в S i состоянии. В результате решения полученной системы уравнений определяют значение К г или К т как сумму вероятностей всех состояний, в которых изделие работоспособно, по формуле

(5)

8. Определение дисперсии средней наработки до отказа.

В соответствии с графом переходов изделия из состояния в состояние составляется матрица вероятностей переходов Р , каждый элемент которой включает: l i , m i , dt . В дальнейшем эта матрица преобразуется в матрицу l * путем отбрасывания отказовых состояний и вычеркивания элемента dt . Вычитая матрицу l * из единичной матрицы Е , получают матрицу интенсивностей отказов

l = E - l*, (6)

и возводя ее в квадрат (l 2), получаем исходную матрицу, на основе которой определяется дисперсия D (T cp) средней наработки до отказа

(7)

Здесь D n (l 2) - определитель матрицы l 2 , D i (l 2) - определитель, полученный из матрицы? 2 после вычеркивания i -й строки и i -го столбца.

Среднеквадратическое отклонение средней наработки до отказа будет

(8)

9. Определение вероятности безотказной работы изделия в течение установленного времени .

При незначительном отклонении среднеквадратического отклонения от математического ожидания Т ср

(9)

можно предположить, что распределение отказов подчиняется экспоненциальному закону. Тогда вероятность

(11)

целесообразно представить в графическом виде (черт. 1 ).

Итак, получив прогнозируемое значение Т ср и зная установленное значение Т , определяется значение К («запаса» надежности) по значению которого в соответствии с (черт. 1 ) устанавливается вероятность P (t > T ).

10. Примеры прогнозирования показателей надежности изделий.

10.1. Пример 1. Осуществить прогнозирование средней наработки до отказа телевизионного приемника (телевизора) Т ср по интенсивностям отказов l i его составных частей, представленных в табл. 1 , и определить вероятность Р (К ) безотказной работы телевизора за = 1500 ч; Р (К ) = 0,6.

При условии, что отказ любого i -го модуля M i () приводит к отказу телевизора, его структурную схему надежности можно представить в виде последовательных модулей (черт. 2 ).

Структурная схема надежности телевизора

Соответствующий схеме граф переходов из работоспособного состояния S 1 в неработоспособное S 2 показан на черт. 3 .

В соответствии с п. 4 и графом, изображенным на черт. 3 , составляют дифференциальное уравнение

(12)

для вероятности P 1 (t ) нахождения телевизора в работоспособном состоянии S 1 . Согласно п. 5 интегрирование этого уравнения дает

1 = -l S - t 1 . (13)

Откуда t 1 = l S -1 . Следовательно, средняя наработка до отказа телевизора

T ср = t 1 = l S -1 . (14)

Подставляя в последнее уравнение значение l S из табл. 1 , определяют значение Т ср

Граф переходов телевизора

В связи с экспоненциальным законом распределения отказов определяют значение К . К = Т ср /T = 5800/1500 = 3,87, по значению которого в соответствии с (черт. 1 ) определяют значение вероятности

превосходящее заданное значение Р (K ) = 0,6 и, следовательно удовлетворяющее требованию по «запасу надежности».

Таблица 1

Значения интенсивности отказов составных частей телевизора

Наименование составной части

1. Модуль питания (МП)

2. Плата фильтра питания (ПФП)

3. Модуль радиоканала (МРК)

4. Модуль кадровой развертки (МК)

5. Модуль строчной развертки (МС)

6. Модуль цветности (МЦ)

7. Блок управления (БУ)

8. Модуль усилителя НЧ (МУ)

9. Устройство сенсорного управления (МСУ)

10. Кинескоп (К)

11. Плата кинескопа (ПК)

12. Плата соединений (ПС)

13. Общие пайки (ОП)

14. Обрывы печатного монтажа (ОПМ)

15. Короткие замыкания на телевизоре (КЗ)

16. Нарушения контактов (НК)

17. Расстройка схемы

Телевизор в целом

10.2. Пример 2. Осуществить прогнозирование средней наработки до отказа телевизора с резервированным модулем цветности (МЦ). Исходные данные в табл. 1 . ССН для данного случая представлены на черт. 4 .

Структурная схема надежности телевизора с резервированным модулем цветности

S

S 2 - телевизор работоспособен, но произошел отказ одного из МЦ,

S

Граф переходов телевизора из состояния в состояние приведен на черт. 5 .

Граф переходов телевизора

Исходные данные:

Р (К ) = 0,6;

l м - интенсивность отказов МЦ l м = 36,97 ? 10 -6 1/ч,

l 0 - интенсивность отказов телевизора без МЦ? 0 = 135,5 ? 10 -6 1/ч,

l S - интенсивность отказов нерезервированного телевизора l S = 172,47 ? 10 -6 1/ч.

Для определения значений среднего времени t i S i , i = 1, 2 в соответствии с п. 4 составляют систему дифференциальных уравнений, связывающих вероятности нахождения телевизора в S i состоянии:

(15)

В соответствии с п. 5 дифференциальные уравнения (15 ) преобразуют в алгебраические

(16)

(17)

В соответствии с (3 ) значение средней наработки до отказа составит Т cp = t 1 + t 2 = 6821,5 ч.

Тогда К = 4,54; = 0,815; > P (K ). (18)

10.3. Пример 3. Определить вероятность безотказной работы телевизора с резервированным модулем цветности за 1500 ч его работы. Исходные данные - из примера 2.

В соответствии с п. 8 и графом (черт. 5 ) составляют матрицу вероятностей переходов

из которой получают матрицу

(20)

В соответствии с (6 ) матрица интенсивностей отказов l = Е - l * для рассматриваемого примера будет

(21)

Квадрат матрицы интенсивностей определяется путем умножения:

l 2 = l ? l, т.е.

(22)

Подстановка исходных данных в последнюю матрицу дает:

В соответствии с (7 ) определяют дисперсию средней наработки до отказа

Среднее квадратическое отклонение s(Т ср) составит

s(Т ср) = 7510 ч. (25)

В соответствии с (9 ) получают:

(26)

Выполнение условия (9 ) позволяет воспользоваться экспоненциальным законом распределения отказов. Определяют соотношение:

(27)

1 ) для К равного 4,55 определяют вероятность безотказной работы телевизора за 1500 ч.

Р (t > 1500) = 0,83.

10.4. Пример 4. Осуществить прогнозирование средней наработки до отказа резервированного, восстанавливаемого телевизора. Исходные данные в примере 2.

ССН для данного примера совпадает со схемой, приведенной на черт. 4 , за исключением наличия восстановления.

Характерными состояниями телевизора будут:

S 1 - телевизор работоспособен,

S 2 - телевизор работоспособен, произошел отказ одного из МЦ, осуществляется его восстановление,

S 3 - телевизор неработоспособен.

Граф переходов телевизора из состояния в состояние показаны на черт. 6 .

Граф переходов телевизора

Исходные данные:

l м - интенсивность отказов МЦ, l м = 36,97 ? 10 -6 1/ч;

l 0 - интенсивность отказов телевизора без МЦ, l 0 = 135,5 ? 10 -6 1/ч;

l S - интенсивность отказов нерезервированного телевизора,

l ? = 172,47 ? 10 -6 1/ч,

m - интенсивность восстановления МЦ, ? = 0,5 1/ч.

Для определения средних значений времени t i нахождения телевизора в состояниях S i , i = 1, 2 в соответствии с п. 4 составляют систему дифференциальных уравнений

(28)

Согласно п. 5 преобразуют дифференциальные уравнения (28 ) в алгебраические

(29)

решение которых дает

(30)

Подставляя исходные данные в выражение для t i , i = 1, 2, определяют значение средней наработки до отказа восстанавливаемого телевизора

Т ср = t 1 + t 2 = 7380 + 1 = 7381 ч. (31)

Соотношение К составит:

(32)

В соответствии с графиком (черт. 1 ) для К = 4,92 вероятность безотказной работы телевизора за 1500 ч составит P (t > 1500) = 0,83, что превосходит заданное значение Р (К ).

10.5. Пример 5. Провести прогнозирование коэффициента технического использования и средней наработки на отказ резервированного, восстанавливаемого телевизора. Исходные данные - в примере 4.

Состояние телевизора то же, что и в примере 4. Граф переходов его из состояния в состояние показан на черт. 7 .

Граф переходов телевизора

Исходные данные:

l м, l S , l 0 , t 1 , t 2 - те же, что в примере 4; m = m 0 = 0,5 1/ч.

Промежуточные величины:

p i - установившаяся (стационарная) вероятность нахождения телевизора в состоянии S i при t ® ?;

t i - среднее время пребывания изделия в состоянии S i .

Прогнозируемые показатели надежности:

К т - коэффициент технического использования;

Т 0 - средняя наработка на отказ.

Дифференциальные уравнения для прогнозирования надежности, связывающие вероятности нахождения телевизора в S i состоянии, будут

(33)

В соответствии с п. 7 преобразуют систему дифференциальных уравнений (32 ) в систему алгебраических, отбросив второе уравнение, и приняв во внимание (2 )

(34)

Решая алгебраические уравнения, определяют значения p 1 и p 2:

(35)

Подставляя значения исходных данных, получают значение К т

К т = p 1 + p 2 = 0,99958 + 0,00003 = 0,99061. (36)

Значение средней наработки на отказ определяется по формуле (4 )

(37)

Значения К и аналогичные примеру 4.

ПОЭЛЕМЕНТНЫЙ МЕТОД РАСЧЕТА ПН ИЗДЕЛИЙ БЕЗ УЧЕТА И С УЧЕТОМ НАГРУЗКИ

1. Поэлементный метод расчета ПН изделий без учета нагрузки используется для расчета ПН на этапе предварительного прогнозирования.

Поэлементный метод расчета ПН изделий с учетом нагрузки используется на этапе детального прогнозирования при техническом проектировании и разработке РКД.

2. Поэлементный метод расчета ПН изделий без учета нагрузки применяется в том случае, если сложность проекта изделия, т.е. количество элементов, практически не изменяется к этапу технического проектирования.

Поэлементный метод расчета ПН изделий с учетом нагрузки на элементы позволяет определить показатели надежности при различных условиях эксплуатации.

3. Оба метода предполагают, что закон распределения отказов экспоненциальный.

4. Методика для обоих методов идентичная и заключается в следующем:

интенсивность отказов изделия определяют прямым суммированием интенсивностей отказов всех элементов на основе последовательной модели надежности;

определяют необходимую информацию;

общие группы элементов, включая сложность изделий микроэлектроники;

количество элементов;

условия эксплуатации и для поэлементного метода расчета ПН изделий с учетом нагрузки на элементы - эксплуатационные нагрузки на элементы;

рассчитывают интенсивность отказов изделия в соответствии с формулами:

для поэлементного метода расчета ПН изделий без учета нагрузки

(39)

с учетом нагрузки

(40)

где l - общая интенсивность отказов изделия;

l н, l э - интенсивность отказов для i -го элемента для поэлементного метода расчета ПН изделия с учетом нагрузки и без учета нагрузки соответственно;

k - поправочный коэффициент качества для i -го элемента;

N i - количество элементов;

п - число различных категорий элементов.

Оба выражения применяются при одинаковых условиях эксплуатации для каждого i -го элемента изделия.

В том случае, если изделие может применяться в различных условиях эксплуатации, общую интенсивность отказов изделий рассчитывают для каждого условия отдельно.

В случае, если элементы поставляются в соответствии с ТУ, для неэлектронных элементов k = 1.

5. Примером использования поэлементного метода расчета показателей надежности с учетом нагрузок на элементы может служить метод расчета телевизоров черно-белого и цветного изображения.

5.1. Значения интенсивности отказов l для различных элементов (кроме непроволочных переменных резисторов и соединителей) при известных тепловых и электрических режимах применения элемента в схеме телевизора и известном номинальном значении интенсивности отказов элемента l 0 , соответствующем коэффициенту нагрузки К н = 1 и температуре окружающей среды 20 °С, должны определяться по формуле:

l = l 0 ? a, (41)

где a - поправочный коэффициент, учитывающий данный режим применения элемента.

Интенсивность отказов переменных непроволочных резисторов должна определяться по формуле:

l = l 0 ? a ? а R , (42)

где a R - поправочный коэффициент, зависящий от величины номинального сопротивления переменного резистора.

Интенсивность отказов соединителей определяется по формуле:

Р - фактическое число сочленений соединителя;

N - допустимое число сочленений соединителя по техническим условиям (ТУ);

т - число задействованных контактов соединителя в схеме;

М - фактическое число контактов.

5.2. При неизвестном значении l 0 интенсивность отказов элементов определяется статистическим методом на основе обработки данных по отказам телевизоров при испытаниях на надежность и в процессе эксплуатации, т.е. l = l ср.ст, где l ср.ст - среднее значение интенсивности отказов.

5.3. Интенсивность отказов элемента при известных значениях l 0 и l ср.ст. и неизвестных объективных данных по режимам применения элемента принимается равной l ср. ст.

5.4. Интенсивность отказов элемента при неизвестных значениях l 0 и l ср.ст. определяется путем подбора аналога.

При отсутствии аналогов номинальное значение интенсивности отказов элемента следует принять равным среднему номинальному значению интенсивности отказов l 0ср, рассчитанному для групп элементов, имеющих общие признаки (по конструкции, параметрам).

МЕТОД ПРОГНОЗИРОВАНИЯ НАДЕЖНОСТИ ПО РЕЗУЛЬТАТАМ ТЕХНОЛОГИЧЕСКОЙ ПРИРАБОТКИ (ТП) АППАРАТУРЫ

1. Главной целью технологической приработки аппаратуры является уменьшение интенсивности неслучайных отказов.

2. Эффективная технологическая приработка полностью лимитируется продолжительностью периода ранних отказов, которые обычно для АРЭБ составляют несколько сотен часов.

3. Математическое моделирование технологической приработки аппаратуры позволяет оценить эффективность технологической приработки по эксплуатационным данным.

4. Любые систематические отказы, выявленные при технологической приработке, должны быть исключены из моделирования.

5. Прогнозирование надежности по результатам ТП осуществляют с применением аналоговой модели «AMSAA».

6. Модель «AMSAA» не разделяет отказы на систематические и случайные.

Формализованное описание модели

Х = a ? Т b , 0 < b < 1, (44)

где X - суммарное число отказов за время ТП;

Т - время ТП;

a и b - постоянные параметры:

a - функция начальной надежности;

b - функция эффективности улучшения.

7. Мгновенная интенсивность отказов Z описывается на основе уравнения

(45)

(это выражение равно тангенсу угла характеристики Х (Т ) в точке Т ). Мгновенная наработка на отказ определяется по формуле

8. Для достоверной оценки показателей надежности результатов рекомендуется иметь не менее 10 учитываемых отказов.

9. Примером использования метода прогнозирования надежности по результатам ТП может служить метод ускоренной оптимизации ТП бытовых магнитофонов, заключающийся в следующем:

9.1. Оценку прогнозируемой наработки на отказ производят на основе модели роста надежности магнитофонов в процессе ТП по формуле

X = K ? t m , (47)

где X - суммарное количество отказов за суммарное время t испытаний;

К , m - параметры изделия.

9.2. Оценку наработки на отказ производят в следующем порядке.

9.2.1. Испытания (ТП) n -й выборки магнитофонов производят по рабочему плану до получения 10 - 20 отказов в каждой выборке.

субъективно оценивают степень совпадения полученных точек графика с прямой линией, проходящей через центр координат под углом 45° к осям;

при необходимости, используют соответствующие критерии статистической оценки совпадения.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1 . ИСПОЛНИТЕЛИ

Г.Ф. Фирсенков, канд. техн. наук (руководитель темы), И.В. Болдырев, В.Е. Милованова, А.И. Черноскутов, Ю.Д. Шувалова

2 . УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 13.01.88 № 31

3 . Срок проверки - 1992 г.; периодичность проверки - 5 лет.

4 . Стандарт полностью соответствует международным стандартам ИСО 9000-86 - ИСО 9003-86.

5 . ВВЕДЕН ВПЕРВЫЕ

6 . ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Поделитесь с друзьями или сохраните для себя:

Загрузка...